Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Liver Int ; 35(9): 2129-38, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25646700

RESUMO

BACKGROUND: Therapeutic options to treat Non-alcoholic steatohepatitis (NASH) are limited. Mineralocorticoid receptor (MR) activation could play a role in hepatic fibrogenesis and its modulation could be beneficial for NASH. AIM: To investigate whether eplerenone, a specific MR antagonist, ameliorates liver damage in experimental NASH. METHODS: C57bl6 mice were fed a choline-deficient and amino acid-defined (CDAA) diet for 22 weeks with or without eplerenone supplementation. Serum levels of aminotransferases and aldosterone were measured and hepatic steatosis, inflammation and fibrosis scored histologically. Hepatic triglyceride content (HTC) and hepatic mRNA levels of pro-inflammatory pro-fibrotic, oxidative stress-associated genes and of MR were also assessed. RESULTS: CDAA diet effectively induced fibrotic NASH, and increased the hepatic expression of pro-inflammatory, pro-fibrotic and oxidative stress-associated genes. Hepatic MR mRNA levels significantly correlated with the expression of pro-inflammatory and pro-fibrotic genes and were significantly increased in hepatic stellate cells obtained from CDAA-fed animals. Eplerenone administration was associated to a reduction in histological steatosis and attenuation of liver fibrosis development, which was associated to a significant decrease in the expression of collagen-α1, collagen type III, alpha 1 and Matrix metalloproteinase-2. CONCLUSION: The expression of MR correlates with inflammation and fibrosis development in experimental NASH. Specific MR blockade with eplerenone has hepatic anti-steatotic and anti-fibrotic effects. These data identify eplerenone as a potential novel therapy for NASH. Considering its safety and FDA-approved status, human studies are warranted.


Assuntos
Cirrose Hepática/patologia , Antagonistas de Receptores de Mineralocorticoides/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estresse Oxidativo/genética , Receptores de Mineralocorticoides/metabolismo , Espironolactona/análogos & derivados , Animais , Biomarcadores/análise , Modelos Animais de Doenças , Eplerenona , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Mineralocorticoides/genética , Espironolactona/administração & dosagem
2.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118716, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275931

RESUMO

RNA editing has emerged as a novel mechanism in cancer progression. The double stranded RNA-specific adenosine deaminase (ADAR) modifies the expression of an important proportion of genes involved in cell cycle control, DNA damage response (DDR) and transcriptional processing, suggesting an important role of ADAR in transcriptome regulation. Despite the phenotypic implications of ADAR deregulation in several cancer models, the role of ADAR on DDR and proliferation in breast cancer has not been fully addressed. Here, we show that ADAR expression correlates significantly with clinical outcomes and DDR, cell cycle and proliferation mRNAs of previously reported edited transcripts in breast cancer patients. ADAR's knock-down in a breast cancer cell line produces stability changes of mRNAs involved in DDR and DNA replication. Breast cancer cells with reduced levels of ADAR show a decreased viability and an increase in apoptosis, displaying a significant decrease of their DDR activation, compared to control cells. These results suggest that ADAR plays an important role in breast cancer progression through the regulation of mRNA stability and expression of those genes involved in proliferation and DDR impacting the viability of breast cancer cells.


Assuntos
Adenosina Desaminase/metabolismo , Neoplasias da Mama/metabolismo , Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , Adenosina Desaminase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Células MCF-7 , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA