Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 131: 53-65, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005484

RESUMO

AIMS: Atrial contractile dysfunction is associated with increased mortality in heart failure (HF). We have shown previously that a metabolic syndrome-based model of HFpEF and a model of hypertensive heart disease (HHD) have impaired left atrial (LA) function in vivo (rat). In this study we postulate, that left atrial cardiomyocyte (CM) and cardiac fibroblast (CF) paracrine interaction related to the inositol 1,4,5-trisphosphate signalling cascade is pivotal for the manifestation of atrial mechanical dysfunction in HF and that quantitative atrial remodeling is highly disease-dependent. METHODS AND RESULTS: Differential remodeling was observed in HHD and HFpEF as indicated by an increase of atrial size in vivo (HFpEF), unchanged fibrosis (HHD and HFpEF) and a decrease of CM size (HHD). Baseline contractile performance of rat CM in vitro was enhanced in HFpEF. Upon treatment with conditioned medium from their respective stretched CF (CM-SF), CM (at 21 weeks) of WT showed increased Ca2+ transient (CaT) amplitudes related to the paracrine activity of the inotrope endothelin (ET-1) and inositol 1,4,5-trisphosphate induced Ca2+ release. Concentration of ET-1 was increased in CM-SF and atrial tissue from WT as compared to HHD and HFpEF. In HHD, CM-SF had no relevant effect on CaT kinetics. However, in HFpEF, CM-SF increased diastolic Ca2+ and slowed Ca2+ removal, potentially contributing to an in-vivo decompensation. During disease progression (i.e. at 27 weeks), HFpEF displayed dysfunctional excitation-contraction-coupling (ECC) due to lower sarcoplasmic-reticulum Ca2+ content unrelated to CF-CM interaction or ET-1, but associated with enhanced nuclear [Ca2+]. In human patients, tissue ET-1 was not related to the presence of arterial hypertension or obesity. CONCLUSIONS: Atrial remodeling is a complex entity that is highly disease and stage dependent. The activity of fibrosis related to paracrine interaction (e.g. ET-1) might contribute to in vitro and in vivo atrial dysfunction. However, during later stages of disease, ECC is impaired unrelated to CF.


Assuntos
Fibroblastos/citologia , Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Hipertensão/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Animais , Fibrilação Atrial/metabolismo , Remodelamento Atrial/fisiologia , Comunicação Celular/fisiologia , Ecocardiografia , Átrios do Coração/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratos
2.
J Card Fail ; 24(9): 603-613, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30195827

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is underpinned by detrimental skeletal muscle alterations that contribute to disease severity, yet underlying mechanisms and therapeutic treatments remain poorly established. This study used a nonhuman animal model of HFpEF to better understand whether skeletal muscle abnormalities were (1) fiber-type specific and (2) reversible by various exercise training regimes. METHODS AND RESULTS: Lean control rats were compared with obese ZSF1 rats at 20 weeks and then 8 weeks after sedentary, high-intensity interval training, or moderate continuous treadmill exercise. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were assessed for fiber size, capillarity, glycolytic metabolism, autophagy, and contractile function. HFpEF reduced fiber size and capillarity by 20%-50% (P < .05) in both soleus and EDL, but these effects were not reversed by endurance training. In contrast, both endurance training regimes in HFpEF attenuated the elevated lactate dehydrogenase activity observed in the soleus. Autophagy was down-regulated in EDL and up-regulated in soleus (P < .05), with no influence of endurance training. HFpEF impaired contractile forces of both muscles by ∼20% (P < .05), and these were not reversed by training. CONCLUSIONS: Obesity-related HFpEF was associated with detrimental structural, cellular, and functional alterations to both slow-oxidative and fast-glycolytic skeletal muscles that could not be reversed by endurance training.


Assuntos
Insuficiência Cardíaca/reabilitação , Contração Muscular/fisiologia , Músculo Esquelético/patologia , Estresse Oxidativo , Condicionamento Físico Animal/métodos , Volume Sistólico/fisiologia , Animais , Autofagia , Modelos Animais de Doenças , Terapia por Exercício , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Hidroliases/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Ratos , Ratos Zucker
3.
J Cell Mol Med ; 20(11): 2208-2212, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27305869

RESUMO

Cardiac endoplasmic reticulum (ER) stress through accumulation of misfolded proteins plays a pivotal role in cardiovascular diseases. In an attempt to reestablish ER homoeostasis, the unfolded protein response (UPR) is activated. However, if ER stress persists, sustained UPR activation leads to apoptosis. There is no available therapy for ER stress relief. Considering that aerobic exercise training (AET) attenuates oxidative stress, mitochondrial dysfunction and calcium imbalance, it may be a potential strategy to reestablish cardiac ER homoeostasis. We test the hypothesis that AET would attenuate impaired cardiac ER stress after myocardial infarction (MI). Wistar rats underwent to either MI or sham surgeries. Four weeks later, rats underwent to 8 weeks of moderate-intensity AET. Myocardial infarction rats displayed cardiac dysfunction and lung oedema, suggesting heart failure. Cardiac dysfunction in MI rats was paralleled by increased protein levels of UPR markers (GRP78, DERLIN-1 and CHOP), accumulation of misfolded and polyubiquitinated proteins, and reduced chymotrypsin-like proteasome activity. These results suggest an impaired cardiac protein quality control. Aerobic exercise training improved exercise capacity and cardiac function of MI animals. Interestingly, AET blunted MI-induced ER stress by reducing protein levels of UPR markers, and accumulation of both misfolded and polyubiquinated proteins, which was associated with restored proteasome activity. Taken together, our study provide evidence for AET attenuation of ER stress through the reestablishment of cardiac protein quality control, which contributes to better cardiac function in post-MI heart failure rats. These results reinforce the importance of AET as primary non-pharmacological therapy to cardiovascular disease.


Assuntos
Estresse do Retículo Endoplasmático , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Condicionamento Físico Animal , Proteínas/metabolismo , Animais , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Testes de Função Cardíaca , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Dobramento de Proteína , Ratos Wistar
4.
Basic Res Cardiol ; 110(4): 44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26112154

RESUMO

Diabetes mellitus (DM) increases the risk of heart failure after myocardial infarction (MI), and aggravates ventricular arrhythmias in heart failure patients. Although exercise training improves cardiac function in heart failure, it is still unclear how it benefits the diabetic heart after MI. To study the effects of aerobic interval training on cardiac function, susceptibility to inducible ventricular arrhythmias and cardiomyocyte calcium handling in DM mice after MI (DM-MI). Male type 2 DM mice (C57BLKS/J Lepr (db) /Lepr (db) ) underwent MI or sham surgery. One group of DM-MI mice was submitted to aerobic interval training running sessions during 6 weeks. Cardiac function and structure were assessed by echocardiography and magnetic resonance imaging, respectively. Ventricular arrhythmias were induced by high-frequency cardiac pacing in vivo. Protein expression was measured by Western blot. DM-MI mice displayed increased susceptibility for inducible ventricular arrhythmias and impaired diastolic function when compared to wild type-MI, which was associated with disruption of cardiomyocyte calcium handling and increased calcium leak from the sarcoplasmic reticulum. High-intensity exercise recovered cardiomyocyte function in vitro, reduced sarcoplasmic reticulum diastolic calcium leak and significantly reduced the incidence of inducible ventricular arrhythmias in vivo in DM-MI mice. Exercise training also normalized the expression profile of key proteins involved in cardiomyocyte calcium handling, suggesting a potential molecular mechanism for the benefits of exercise in DM-MI mice. High-intensity aerobic exercise training recovers cardiomyocyte function and reduces inducible ventricular arrhythmias in infarcted diabetic mice.


Assuntos
Arritmias Cardíacas/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Infarto do Miocárdio/complicações , Condicionamento Físico Animal , Animais , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Função Ventricular Esquerda
5.
Circ Res ; 110(11): 1474-83, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22511749

RESUMO

RATIONALE: Increased activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is thought to promote heart failure (HF) progression. However, the importance of CaMKII phosphorylation of ryanodine receptors (RyR2) in HF development and associated diastolic sarcoplasmic reticulum Ca(2+) leak is unclear. OBJECTIVE: Determine the role of CaMKII phosphorylation of RyR2 in patients and mice with nonischemic and ischemic forms of HF. METHODS AND RESULTS: Phosphorylation of the primary CaMKII site S2814 on RyR2 was increased in patients with nonischemic, but not with ischemic, HF. Knock-in mice with an inactivated S2814 phosphorylation site were relatively protected from HF development after transverse aortic constriction compared with wild-type littermates. After transverse aortic constriction, S2814A mice did not exhibit pulmonary congestion and had reduced levels of atrial natriuretic factor. Cardiomyocytes from S2814A mice exhibited significantly lower sarcoplasmic reticulum Ca(2+) leak and improved sarcoplasmic reticulum Ca(2+) loading compared with wild-type mice after transverse aortic constriction. Interestingly, these protective effects on cardiac contractility were not observed in S2814A mice after experimental myocardial infarction. CONCLUSIONS: Our results suggest that increased CaMKII phosphorylation of RyR2 plays a role in the development of pathological sarcoplasmic reticulum Ca(2+) leak and HF development in nonischemic forms of HF such as transverse aortic constriction in mice.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Adulto , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Técnicas de Introdução de Genes , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/prevenção & controle , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , Contração Miocárdica , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo , Serina , Fatores de Tempo , Regulação para Cima , Função Ventricular Esquerda , Pressão Ventricular , Remodelação Ventricular
6.
J Magn Reson Imaging ; 38(6): 1388-94, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23559475

RESUMO

PURPOSE: To evaluate late gadolinium-enhanced (LGE) assessment of infarct size, a comparison with manganese-enhanced magnetic resonance imaging (MEMRI), and histology was performed in a permanent infarction model in the mouse at the acute and chronic stage. MATERIALS AND METHODS: In a paired fashion at the acute and chronic stage after infarction (3-4 days and 21 days, respectively), LGE and MEMRI was performed using a self-gated fast low flip angle shot (FLASH). Infarct size was evaluated as the enhanced area relative to the complete myocardial wall area in a mid-ventricular slice. Paired comparisons were made between contrast agents and between timepoints, as well as to histology. RESULTS: At the acute stage, LGE delineated a larger infarct size as compared to both MEMRI and histology. Infarct size from LGE decreased from the acute to chronic stage, a temporal development not seen with MEMRI. At the chronic stage, no significant differences in infarct size were found between the methods. CONCLUSION: This study indicates an overenhancement of infarct size when using LGE, supported by an initial overestimation at the acute stage and a temporal decrease in infarct size from the acute to chronic stage, as compared to infarct size from MEMRI.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Gadolínio DTPA/administração & dosagem , Aumento da Imagem/métodos , Cloreto de Magnésio/administração & dosagem , Infarto do Miocárdio/patologia , Algoritmos , Animais , Meios de Contraste/administração & dosagem , Feminino , Interpretação de Imagem Assistida por Computador/métodos , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Circ Res ; 109(10): 1162-72, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21921265

RESUMO

RATIONALE: Low aerobic exercise capacity is a powerful predictor of premature morbidity and mortality for healthy adults as well as those with cardiovascular disease. For aged populations, poor performance on treadmill or extended walking tests indicates closer proximity to future health declines. Together, these findings suggest a fundamental connection between aerobic capacity and longevity. OBJECTIVES: Through artificial selective breeding, we developed an animal model system to prospectively test the association between aerobic exercise capacity and survivability (aerobic hypothesis). METHODS AND RESULTS: Laboratory rats of widely diverse genetic backgrounds (N:NIH stock) were selectively bred for low or high intrinsic (inborn) treadmill running capacity. Cohorts of male and female rats from generations 14, 15, and 17 of selection were followed for survivability and assessed for age-related declines in cardiovascular fitness including maximal oxygen uptake (VO(2max)), myocardial function, endurance performance, and change in body mass. Median lifespan for low exercise capacity rats was 28% to 45% shorter than high capacity rats (hazard ratio, 0.06; P<0.001). VO(2max), measured across adulthood was a reliable predictor of lifespan (P<0.001). During progression from adult to old age, left ventricular myocardial and cardiomyocyte morphology, contractility, and intracellular Ca(2+) handling in both systole and diastole, as well as mean blood pressure, were more compromised in rats bred for low aerobic capacity. Physical activity levels, energy expenditure (Vo(2)), and lean body mass were all better sustained with age in rats bred for high aerobic capacity. CONCLUSIONS: These data obtained from a contrasting heterogeneous model system provide strong evidence that genetic segregation for aerobic exercise capacity can be linked with longevity and are useful for deeper mechanistic exploration of aging.


Assuntos
Envelhecimento/fisiologia , Longevidade , Resistência Física , Envelhecimento/genética , Animais , Pressão Sanguínea , Composição Corporal , Peso Corporal , Sinalização do Cálcio , Metabolismo Energético , Feminino , Genótipo , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/metabolismo , Longevidade/genética , Masculino , Contração Miocárdica , Consumo de Oxigênio , Fenótipo , Resistência Física/genética , Ratos , Corrida , Função Ventricular Esquerda
8.
Eur J Appl Physiol ; 112(2): 579-88, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21614506

RESUMO

Activation of the multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a critical role modulating cardiac function in both health and disease. Here, we determined the effect of chronic CaMKII inhibition during an exercise training program in healthy mice. CaMKII was inhibited by KN-93 injections. Mice were randomized to the following groups: sham sedentary, sham exercise, KN-93 sedentary, and KN-93 exercise. Cardiorespiratory function was evaluated by ergospirometry during treadmill running, echocardiography, and cardiomyocyte fractional shortening and calcium handling. The results revealed that KN-93 alone had no effect on exercise capacity or fractional shortening. In sham animals, exercise training increased maximal oxygen uptake by 8% (p < 0.05) compared to a 22% (p < 0.05) increase after exercise in KN-93 treated mice (group difference p < 0.01). In contrast, in vivo fractional shortening evaluated by echocardiography improved after exercise in sham animals only: from 25 to 32% (p < 0.02). In inactive mice, KN-93 reduced rates of diastolic cardiomyocyte re-lengthening (by 25%, p < 0.05) as well as Ca(2+) transient decay (by 16%, p < 0.05), whereas no such effect was observed after exercise training. KN-93 blunted exercise training response on cardiomyocyte fractional shortening (63% sham vs. 18% KN-93; p < 0.01 and p < 0.05, respectively). These effects could not be solely explained by the Ca(2+) transient amplitude, as KN-93 reduced it by 20% (p < 0.05) and response to exercise training was equal (64% sham and 47% KN-93; both p < 0.01). We concluded that chronic CaMKII inhibition increased time to 50% re-lengthening which were recovered by exercise training, but paradoxically led to a greater increase in maximal oxygen uptake compared to sham mice. Thus, the effect of chronic CaMKII inhibition is multifaceted and of a complex nature.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Contração Miocárdica/fisiologia , Condicionamento Físico Animal/métodos , Esforço Físico/fisiologia , Animais , Benzilaminas/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/efeitos dos fármacos , Esforço Físico/efeitos dos fármacos , Sulfonamidas/farmacologia
9.
Circ Res ; 105(6): 527-36, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19679837

RESUMO

RATIONALE: In the present study we explored the mechanisms behind excitation-contraction (EC) coupling defects in cardiomyocytes from mice with type-2 diabetes (db/db). OBJECTIVE: We determined whether 13 weeks of aerobic interval training could restore cardiomyocyte Ca(2+) cycling and EC coupling. METHODS AND RESULTS: Reduced contractility in cardiomyocytes isolated from sedentary db/db was associated with increased diastolic sarcoplasmic reticulum (SR)-Ca(2+) leak, reduced synchrony of Ca(2+) release, reduced transverse (T)-tubule density, and lower peak systolic and diastolic Ca(2+) and caffeine-induced Ca(2+) release. Additionally, the rate of SR Ca(2+) ATPase-mediated Ca(2+) uptake during diastole was reduced, whereas a faster recovery from caffeine-induced Ca(2+) release indicated increased Na(+)/Ca(2+)-exchanger activity. The increased SR-Ca(2+) leak was attributed to increased Ca(2+)-calmodulin-dependent protein kinase (CaMKIIdelta) phosphorylation, supported by the normalization of SR-Ca(2+) leak on inhibition of CaMKIIdelta (AIP). Exercise training restored contractile function associated with restored SR Ca(2+) release synchronicity, T-tubule density, twitch Ca(2+) amplitude, SR Ca(2+) ATPase and Na(+)/Ca(2+)-exchanger activities, and SR-Ca(2+) leak. The latter was associated with reduced phosphorylation of cytosolic CaMKIIdelta. Despite normal contractile function and Ca(2+) handling after the training period, phospholamban was hyperphosphorylated at Serine-16. Protein kinase A inhibition (H-89) in cardiomyocytes from the exercised db/db group abolished the differences in SR-Ca(2+) load when compared with the sedentary db/db mice. EC coupling changes were observed without changes in serum insulin or glucose levels, suggesting that the exercise training-induced effects are not via normalization of the diabetic condition. CONCLUSIONS: These data demonstrate that aerobic interval training almost completely restored the contractile function of the diabetic cardiomyocyte to levels close to sedentary wild type.


Assuntos
Cálcio/metabolismo , Cardiomiopatias/metabolismo , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diástole , Miócitos Cardíacos/metabolismo , Condicionamento Físico Animal , Retículo Sarcoplasmático/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Células Cultivadas , Complicações do Diabetes/genética , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Masculino , Camundongos , Proteínas Musculares/metabolismo , Fosforilação
10.
ESC Heart Fail ; 8(1): 139-150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33350094

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is associated with reduced exercise capacity elicited by skeletal muscle (SM) alterations. Up to now, no clear medical treatment advice for HFpEF is available. Identification of the ideal animal model mimicking the human condition is a critical step in developing and testing treatment strategies. Several HFpEF animals have been described, but the most suitable in terms of comparability with SM alterations in HFpEF patients is unclear. The aim of the present study was to investigate molecular changes in SM of three different animal models and to compare them with alterations of muscle biopsies obtained from human HFpEF patients. METHODS AND RESULTS: Skeletal muscle tissue was obtained from HFpEF and control patients and from three different animal models including the respective controls-ZSF1 rat, Dahl salt-sensitive rat, and transverse aortic constriction surgery/deoxycorticosterone mouse. The development of HFpEF was verified by echocardiography. Protein expression and enzyme activity of selected markers were assessed in SM tissue homogenates. Protein expression between SM tissue obtained from HFpEF patients and the ZSF1 rats revealed similarities for protein markers involved in muscle atrophy (MuRF1 expression, protein ubiquitinylation, and LC3) and mitochondrial metabolism (succinate dehydrogenase and malate dehydrogenase activity, porin expression). The other two animal models exhibited far less similarities to the human samples. CONCLUSIONS: None of the three tested animal models mimics the condition in HFpEF patients completely, but among the animal models tested, the ZSF1 rat (ZSF1-lean vs. ZSF1-obese) shows the highest overlap to the human condition. Therefore, when studying therapeutic interventions to treat HFpEF and especially alterations in the SM, we suggest that the ZSF1 rat is a suitable model.


Assuntos
Insuficiência Cardíaca , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Músculo Esquelético , Ratos , Ratos Endogâmicos Dahl , Volume Sistólico
11.
ESC Heart Fail ; 8(3): 1806-1818, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768692

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT). METHODS AND RESULTS: Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo-4, confocal) were compared in ZSF-1 obese (metabolic syndrome, HFpEF) and ZSF-1 lean (control) 21- and 28-week-old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca2+ reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+ ] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1-5 Hz), MICT accelerated early Ca2+ release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+ ] or cytosolic Ca2+ load at basal or increased pacing rate (1-5 Hz). MICT lowered pro-arrhythmogenic Ca2+ sparks and attenuated Ca2+ -wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. CONCLUSIONS: In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end-diastolic volume, and cellular arrhythmogenicity.


Assuntos
Insuficiência Cardíaca , Animais , Ecocardiografia , Miócitos Cardíacos , Ratos , Retículo Sarcoplasmático , Volume Sistólico
12.
Eur J Cardiovasc Prev Rehabil ; 17(1): 83-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19923995

RESUMO

BACKGROUND: Physiological studies of long-term cardiovascular adaptation to exercise require adequate testing procedures to quantify the outcome. Such test procedures are well established in rats and mice. However, the use of these species may have limitations, and to study several physiological parameters mimicking 'the human adaptation' larger animal models may be preferable. Here, we established a valid and reproducible exercise test protocol for measuring maximal oxygen uptake (VO2max) in rabbits. METHODS AND RESULTS: The VO2max protocol was studied in six adult female New Zealand White rabbits running on a treadmill at inclinations ranging from 0 to 20 degrees. VO2max was reached at all inclinations indicating that the rabbits reach exhaustion independent of inclination. Average VO2max for test and retest were 35.1+/-4.2 and 35.8+/-4.0 ml/kg per min, respectively. Oxygen uptake and heart rate increased linearly with increased running speed. Average running speed at VO2max was 0.51+/-0.09 m/s, and there was an increase oxygen pulse up to the intensity corresponding to VO2max, where it leveled off and declined. CONCLUSION: This study shows that rabbit is a suitable species for studying responses to training and could be of great importance for showing novel cellular cardiac adaptations to training.


Assuntos
Teste de Esforço/métodos , Consumo de Oxigênio , Oxigênio/sangue , Esforço Físico , Animais , Comportamento Animal , Biomarcadores/sangue , Eletrocardiografia/métodos , Feminino , Frequência Cardíaca , Ácido Láctico/sangue , Variações Dependentes do Observador , Coelhos , Reprodutibilidade dos Testes , Mecânica Respiratória , Telemetria
13.
World J Urol ; 28(4): 479-85, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20376453

RESUMO

PURPOSE: siRNA has been used successfully in loss-of-function studies in vitro, but neither in vivo nor in clinical applications. The aims of the present study were (1) to establish rat models for in vivo delivery of siRNA to bladder cancer, and (2) to identify potential targets for siRNA. METHODS: The rat models of human urinary carcinoma and rat urinary carcinoma cell line (AY-27) were induced by tobacco-related chemical carcinogens, either N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide (FANFT) or N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). A syngeneic orthotopic bladder cancer model was established by inoculation of AY-27 cells. A fluorescence-labelled negative control siRNA with cationic and neutral liposomes was tested both in vitro (AY-27 cells) and in vivo. RESULTS: siRNA was highly accumulated in the cancer cells as early as 12 h and remained at least for 24 h after a single dose in vivo. Numerous CD3+ T cells appeared mainly in the periphery area of the tumour. Bioinformatics analysis revealed a list of concordantly highly expressed genes, possible siRNA targets, in the animal models as well as human urinary carcinoma. Literature search on siRNA and bladder cancer provided a list of genes used as siRNA targets. CONCLUSION: The methodology and data presented in the present study provide a number of opportunities for basic research on urinary carcinogenesis and for translational research on evaluation of siRNA therapeutic strategies for urinary carcinoma in the native organ, where hormonal, neural and immunological processes more closely resemble the clinical situation.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , RNA Interferente Pequeno/farmacologia , Neoplasias da Bexiga Urinária , Administração Intravesical , Animais , Biópsia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Corantes Fluorescentes , Ratos , Ratos Endogâmicos F344 , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
14.
Front Cardiovasc Med ; 7: 626699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33644125

RESUMO

There is an incomplete understanding of the underlying pathophysiology in hypertensive emergencies, where severely elevated blood pressure causes acute end-organ injuries, as opposed to the long-term manifestations of chronic hypertension. Furthermore, current biomarkers are unable to detect early end-organ injuries like hypertensive encephalopathy and renal thrombotic microangiopathy. We hypothesized that circulating microRNAs (c-miRs) could identify acute and chronic complications of severe hypertension, and that combinations of c-miRs could elucidate important pathways involved. We studied the diagnostic accuracy of 145 c-miRs in Dahl salt-sensitive rats fed either a low-salt (N = 20: 0.3% NaCl) or a high-salt (N = 60: 8% NaCl) diet. Subclinical hypertensive encephalopathy and thrombotic microangiopathy were diagnosed by histopathology. In addition, heart failure with preserved ejection fraction was evaluated with echocardiography and N-terminal pro-brain natriuretic peptide; and endothelial dysfunction was studied using acetylcholine-induced aorta ring relaxation. Systolic blood pressure increased severely in animals on a high-salt diet (high-salt 205 ± 20 mm Hg vs. low-salt 152 ± 18 mm Hg, p < 0.001). Partial least squares discriminant analysis revealed 68 c-miRs discriminating between animals with and without hypertensive emergency complications. Twenty-nine c-miRs were strongly associated with hypertensive encephalopathy, 24 c-miRs with thrombotic microangiopathy, 30 c-miRs with heart failure with preserved ejection fraction, and 28 c-miRs with endothelial dysfunction. Hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction were associated with deviations in many of the same c-miRs, whereas endothelial dysfunction was associated with a different set of c-miRs. Several of these c-miRs demonstrated fair to good diagnostic accuracy for a composite outcome of hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction in receiver-operating-curve analyses (area-under-curve 0.75-0.88). Target prediction revealed an enrichment of genes related to several pathways relevant for cardiovascular disease (e.g., mucin type O-glycan biosynthesis, MAPK, Wnt, Hippo, and TGF-beta signaling). C-miRs could potentially serve as biomarkers of severe hypertensive end-organ injuries and elucidate important pathways involved.

15.
J Mol Cell Cardiol ; 45(2): 240-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18632114

RESUMO

beta-blockers, as class, improve cardiac function and survival in heart failure (HF). However, the molecular mechanisms underlying these beneficial effects remain elusive. In the present study, metoprolol and carvedilol were used in doses that display comparable heart rate reduction to assess their beneficial effects in a genetic model of sympathetic hyperactivity-induced HF (alpha(2A)/alpha(2C)-ARKO mice). Five month-old HF mice were randomly assigned to receive either saline, metoprolol or carvedilol for 8 weeks and age-matched wild-type mice (WT) were used as controls. HF mice displayed baseline tachycardia, systolic dysfunction evaluated by echocardiography, 50% mortality rate, increased cardiac myocyte width (50%) and ventricular fibrosis (3-fold) compared with WT. All these responses were significantly improved by both treatments. Cardiomyocytes from HF mice showed reduced peak [Ca(2+)](i) transient (13%) using confocal microscopy imaging. Interestingly, while metoprolol improved [Ca(2+)](i) transient, carvedilol had no effect on peak [Ca(2+)](i) transient but also increased [Ca(2+)] transient decay dynamics. We then examined the influence of carvedilol in cardiac oxidative stress as an alternative target to explain its beneficial effects. Indeed, HF mice showed 10-fold decrease in cardiac reduced/oxidized glutathione ratio compared with WT, which was significantly improved only by carvedilol treatment. Taken together, we provide direct evidence that the beneficial effects of metoprolol were mainly associated with improved cardiac Ca(2+) transients and the net balance of cardiac Ca(2+) handling proteins while carvedilol preferentially improved cardiac redox state.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Líquido Intracelular/fisiologia , Receptores Adrenérgicos beta/metabolismo , Animais , Carbazóis/uso terapêutico , Carvedilol , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/mortalidade , Testes de Função Cardíaca , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/genética , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Masculino , Metoprolol/uso terapêutico , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/genética , Propanolaminas/uso terapêutico , Distribuição Aleatória
16.
J Appl Physiol (1985) ; 104(1): 103-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17975126

RESUMO

Exercise training (ET) is a coadjuvant therapy in preventive cardiology. It delays cardiac dysfunction and exercise intolerance in heart failure (HF); however, the molecular mechanisms underlying its cardioprotection are poorly understood. We tested the hypothesis that ET would prevent Ca(2+) handling abnormalities and ventricular dysfunction in sympathetic hyperactivity-induced HF mice. A cohort of male wild-type (WT) and congenic alpha(2A)/alpha(2C)-adrenoceptor knockout (alpha(2A)/alpha(2C)ARKO) mice with C57BL6/J genetic background (3-5 mo of age) were randomly assigned into untrained and exercise-trained groups. ET consisted of 8-wk swimming session, 60 min, 5 days/wk. Fractional shortening (FS) was assessed by two-dimensional guided M-mode echocardiography. The protein expression of ryanodine receptor (RyR), phospho-Ser(2809)-RyR, sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), Na(+)/Ca(2+) exchanger (NCX), phospholamban (PLN), phospho-Ser(16)-PLN, and phospho-Thr(17)-PLN were analyzed by Western blotting. At 3 mo of age, no significant difference in FS and exercise tolerance was observed between WT and alpha(2A)/alpha(2C)ARKO mice. At 5 mo, when cardiac dysfunction is associated with lung edema and increased plasma norepinephrine levels, alpha(2A)/alpha(2C)ARKO mice presented reduced FS paralleled by decreased SERCA2 (26%) and NCX (34%). Conversely, alpha(2A)/alpha(2C)ARKO mice displayed increased phospho-Ser(16)-PLN (76%) and phospho-Ser(2809)-RyR (49%). ET in alpha(2A)/alpha(2C)ARKO mice prevented exercise intolerance, ventricular dysfunction, and decreased plasma norepinephrine. ET significantly increased the expression of SERCA2 (58%) and phospho-Ser(16)-PLN (30%) while it restored the expression of phospho-Ser(2809)-RyR to WT levels. Collectively, we provide evidence that improved net balance of Ca(2+) handling proteins paralleled by a decreased sympathetic activity on ET are, at least in part, compensatory mechanisms against deteriorating ventricular function in HF.


Assuntos
Cálcio/metabolismo , Terapia por Exercício , Insuficiência Cardíaca/terapia , Miocárdio/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Disfunção Ventricular/prevenção & controle , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Ecocardiografia , Tolerância ao Exercício , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Miocárdio/enzimologia , Miocárdio/patologia , Norepinefrina/sangue , Esforço Físico , Receptores Adrenérgicos alfa 2/deficiência , Receptores Adrenérgicos alfa 2/genética , Projetos de Pesquisa , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo , Disfunção Ventricular/etiologia , Disfunção Ventricular/metabolismo , Disfunção Ventricular/patologia , Disfunção Ventricular/fisiopatologia
17.
Int J Cardiol ; 273: 147-154, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30193792

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction, but the molecular mechanisms still remain unclear. Whether exercise training (ET) along with which optimal modality can improve endothelial function is controversial. The present study used a hypertensive, diabetic-driven HFpEF animal model (ZSF1 rats) to determine whether different training modalities (moderate-continuous (MCT) and high-intensity interval training (HIIT)) could reverse endothelial dysfunction and to understand the underlying molecular mechanisms. METHODS AND RESULTS: The development of HFpEF in ZSF1 obese animals was confirmed by echocardiography and hemodynamic measurements. Thereafter, animals were randomized into following groups: 1) sedentary, 2) 8 weeks of MCT, 3) 8 weeks of HIIT. ZSF1 lean animals served as control. In vitro measurement of endothelial function in aortic rings revealed significantly impaired endothelial-dependent and -independent vasodilation in HFpEF, which was reversed by MCT and HIIT. At the molecular level, the development of endothelial dysfunction was associated with a reduced expression / activation of endothelial nitric oxide synthase (eNOS), an increase in NADPH and activation of c-Jun N-terminal protein kinase (JNK), a reduced collagen I/III ratio and a reduced lining of the vessel wall by endothelial cells. ET primarily decreased NADPH oxidase expression, and JNK activation, elevated collagen I/III ratio while further improving aortic endothelial cell coverage. CONCLUSIONS: The present study provides evidence that endothelial dysfunction occurs in experimental HFpEF and that ET, independent of the studied training modality, reverses endothelial dysfunction and specific molecular alterations. ET may therefore provide an important therapeutic intervention for HFpEF patients.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Endotélio Vascular/fisiologia , Insuficiência Cardíaca/fisiopatologia , Treinamento Intervalado de Alta Intensidade/métodos , Hipertensão/fisiopatologia , Condicionamento Físico Animal/métodos , Animais , Diabetes Mellitus Experimental/diagnóstico por imagem , Diabetes Mellitus Experimental/terapia , Endotélio Vascular/diagnóstico por imagem , Endotélio Vascular/efeitos dos fármacos , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Hipertensão/diagnóstico por imagem , Hipertensão/terapia , Masculino , Obesidade/diagnóstico por imagem , Obesidade/fisiopatologia , Obesidade/terapia , Condicionamento Físico Animal/fisiologia , Ratos , Volume Sistólico/fisiologia , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
18.
Front Physiol ; 9: 206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593565

RESUMO

Aims: Increasing age is the most important risk factor for atrial fibrillation (AF). Very high doses of exercise training might increase AF risk, while moderate levels seem to be protective. This study aimed to examine the effects of age on vulnerability to AF and whether long-term aerobic interval training (AIT) could modify these effects. Methods: Nine months old, male Sprague-Dawley rats were randomized to AIT for 16 weeks (old-ex) or to a sedentary control group (old-sed), and compared to young sedentary males (young-sed). After the intervention, animals underwent echocardiography, testing of exercise capacity (VO2max), and electrophysiology with AF induction before ex vivo electrophysiology. Fibrosis quantification, immunohistochemistry and western blotting of atrial tissue were performed. Results: Sustained AF was induced in vivo in 4 of 11 old-sed animals, but none of the old-ex or young-sed rats (p = 0.006). VO2max was lower in old-sed, while old-ex had comparable results to young-sed. Fibrosis was increased in old-sed (p = 0.006), with similar results in old-ex. There was a significantly slower atrial conduction in old-sed (p = 0.038), with an increase in old-ex (p = 0.027). Action potential duration was unaltered in old-sed, but prolonged in old-ex (p = 0.036). There were no differences in amount of atrial connexin 43 between groups, but a lateralization in atrial cardiomyocytes of old-sed, with similar findings in old-ex. Conclusion: AF vulnerability was higher in old-sed animals, associated with increased atrial fibrosis, lateralization of connexin-43, and reduced atrial conduction velocity. AIT reduced the age-associated susceptibility to AF, possibly through increased conduction velocity and prolongation of action potentials.

19.
Int J Cardiol ; 272: 194-201, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30173922

RESUMO

BACKGROUND: Disruption of endoplasmic reticulum (ER) homeostasis is a common feature of cardiac diseases. However, the signaling events involved in ER stress-induced cardiac dysfunction are still elusive. Here, we uncovered a mechanism by which disruption of ER homeostasis impairs cardiac contractility. METHODS/RESULTS: We found that ER stress is associated with activation of JNK and upregulation of BNIP3 in a post-myocardial infarction (MI) model of cardiac dysfunction. Of interest, 4-week treatment of MI rats with the chemical ER chaperone 4-phenylbutyrate (4PBA) prevented both activation of JNK and upregulation of BNIP3, and improved cardiac contractility. We showed that disruption of ER homeostasis by treating adult rat cardiomyocytes in culture with tunicamycin leads to contractile dysfunction through JNK signaling pathway. Upon ER stress JNK upregulates BNIP3 in a FOXO3a-dependent manner. Further supporting a BNIP3 mechanism for ER stress-induced deterioration of cardiac function, siRNA-mediated BNIP3 knockdown mitigated ER stress-induced cardiomyocyte dysfunction by reestablishing sarcoplasmic reticulum Ca2+ content. CONCLUSIONS: Collectively, our data identify JNK-dependent upregulation of BNIP3 as a critical process involved in ER stress-induced cardiomyocyte contractile dysfunction and highlight 4PBA as a potential intervention to counteract ER stress-mediated BNIP3 upregulation in failing hearts.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/biossíntese , Proteínas Mitocondriais/biossíntese , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Regulação para Cima/fisiologia , Animais , Células Cultivadas , Ratos
20.
Sci Rep ; 8(1): 17772, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538258

RESUMO

Given the association between high aerobic capacity and the prevention of metabolic diseases, elucidating the mechanisms by which high aerobic capacity regulates whole-body metabolic homeostasis is a major research challenge. Oxidative post-translational modifications (Ox-PTMs) of proteins can regulate cellular homeostasis in skeletal and cardiac muscles, but the relationship between Ox-PTMs and intrinsic components of oxidative energy metabolism is still unclear. Here, we evaluated the Ox-PTM profile in cardiac and skeletal muscles of rats bred for low (LCR) and high (HCR) intrinsic aerobic capacity. Redox proteomics screening revealed different cysteine (Cys) Ox-PTM profile between HCR and LCR rats. HCR showed a higher number of oxidized Cys residues in skeletal muscle compared to LCR, while the opposite was observed in the heart. Most proteins with differentially oxidized Cys residues in the skeletal muscle are important regulators of oxidative metabolism. The most oxidized protein in the skeletal muscle of HCR rats was malate dehydrogenase (MDH1). HCR showed higher MDH1 activity compared to LCR in skeletal, but not cardiac muscle. These novel findings indicate a clear association between Cys Ox-PTMs and aerobic capacity, leading to novel insights into the role of Ox-PTMs as an essential signal to maintain metabolic homeostasis.


Assuntos
Cisteína/metabolismo , Metabolismo Energético/fisiologia , Estresse Oxidativo/fisiologia , Animais , Respiração Celular , Tolerância ao Exercício/fisiologia , Malato Desidrogenase/metabolismo , Masculino , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Oxirredução , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Ratos , Corrida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA