Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Arch Med Res ; 55(6): 103038, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018939

RESUMO

BACKGROUND: Prolonged hospitalization due to the COVID-19 pandemic gathered risk factors for developing invasive candidiasis. AIM: To describe Candida spp. isolated from patients with clinical suspicion of COVID treated in a public hospital specialized in COVID-19 during the pandemic, considering the susceptibility profiles and the risk factors related to the species detected in a positive yeast culture. METHODS: From different samples of 33 patients with comorbidities, 42 clinical isolates were identified by VITEKⓇ MS Plus. Antifungal susceptibility testing was performed using VITEKⓇ 2 Compact with the AST-YS08 card. RESULTS: The most frequently identified species were C. albicans and C. glabrata, which were also the most common co-infections, Saprochaete capitata, an uncommon yeast was isolated in one patient. 85% of the co-infections were COVID positive and 100% of patients with a co-infection required mechanical ventilation (MV) which has been described as one of the major predisposing factors to candidiasis. Candida species vary in their response to treatment. In this study, 44% of isolates identified as C. glabrata were fluconazole-resistant, which were also immediately susceptible to caspofungin; this profile limits therapeutic options and emphasizes the importance of evaluating the susceptibility profile. CONCLUSIONS: This work highlights the increase in isolation of different Candida species during COVID-19 and the importance of establishing criteria to declare Candida colonization or infection and the correct etiological identification to establish an agent-based antifungal treatment, to reduce the spreading risk of Candida spp. in the hospital environment, mortality, time, and cost of hospitalization.

2.
J Glob Antimicrob Resist ; 33: 61-71, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878463

RESUMO

OBJECTIVES: To determine genomic characteristics and molecular epidemiology of carbapenem non-susceptible Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa from medical centres of Mexico using whole genome sequencing data analysed with the EPISEQⓇ CS application and other bioinformatic platforms. METHODS: Clinical isolates collected from 28 centres in Mexico included carbapenem-non-susceptible K. pneumoniae (n = 22), E. coli (n = 24), A. baumannii (n = 16), and P. aeruginosa (n = 13). Isolates were subjected to whole genome sequencing using the Illumina (MiSeq) platform. FASTQ files were uploaded to the EPISEQⓇ CS application for analysis. Additionally, the tools Kleborate v2.0.4 and Pathogenwatch were used as comparators for Klebsiella genomes, and the bacterial whole genome sequence typing database was used for E. coli and A. baumannii. RESULTS: For K. pneumoniae, both bioinformatic approaches detected multiple genes encoding aminoglycoside, quinolone, and phenicol resistance, and the presence of blaNDM-1 explained carbapenem non-susceptibility in 18 strains and blaKPC-3 in four strains. Regarding E. coli, both EPISEQⓇ CS and bacterial whole genome sequence typing database analyses detected multiple virulence and resistance genes: 20 of 24 (83.3%) strains carried blaNDM, 3 of 24 (12.4%) carried blaOXA-232, and 1 carried blaOXA-181. Genes that confer resistance to aminoglycosides, tetracyclines, sulfonamides, phenicols, trimethoprim, and macrolides were also detected by both platforms. Regarding A. baumannii, the most frequent carbapenemase-encoding gene detected by both platforms was blaOXA-72, followed by blaOXA-66. Both approaches detected similar genes for aminoglycosides, carbapenems, tetracyclines, phenicols, and sulfonamides. Regarding P. aeruginosa, blaVIM, blaIMP, and blaGES were the more frequently detected. Multiple virulence genes were detected in all strains. CONCLUSION: Compared to the other available platforms, EPISEQⓇ CS enabled a comprehensive resistance and virulence analysis, providing a reliable method for bacterial strain typing and characterization of the virulome and resistome.


Assuntos
Antibacterianos , Escherichia coli , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Carbapenêmicos , Klebsiella pneumoniae , Aminoglicosídeos , Pseudomonas aeruginosa/genética , Biologia Computacional
3.
Pathogens ; 12(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764952

RESUMO

We analyzed the antimicrobial resistance (AMR) data of 6519 clinical isolates of Escherichia coli (n = 3985), Klebsiella pneumoniae (n = 775), Acinetobacter baumannii (n = 163), Pseudomonas aeruginosa (n = 781), Enterococcus faecium (n = 124), and Staphylococcus aureus (n = 691) from 43 centers in Mexico. AMR assays were performed using commercial microdilution systems (37/43) and the disk diffusion susceptibility method (6/43). The presence of carbapenemase-encoding genes was assessed using PCR. Data from centers regarding site of care, patient age, and clinical specimen were collected. According to the site of care, the highest AMR was observed in E. coli, K. pneumoniae, and P. aeruginosa isolates from ICU patients. In contrast, in A. baumannii, higher AMR was observed in isolates from hospitalized non-ICU patients. According to age group, the highest AMR was observed in the ≥60 years age group for E. coli, E. faecium, and S. aureus, and in the 19-59 years age group for A. baumannii and P. aeruginosa. According to clinical specimen type, a higher AMR was observed in E. coli, K. pneumoniae, and P. aeruginosa isolates from blood specimens. The most frequently detected carbapenemase-encoding gene in E. coli was blaNDM (84%).

4.
Microb Drug Resist ; 28(3): 338-345, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34870473

RESUMO

Aim: This study aims to assess the changes in antimicrobial resistance among some critical and high-priority microorganisms collected previously and during the coronavirus disease 2019 (COVID-19) pandemic in Mexico. Methods: We collected antimicrobial susceptibility data for critical and high-priority microorganisms from blood, urine, respiratory samples, and from all specimens, in which the pathogen may be considered a causative agent. Data were stratified and compared for two periods: 2019 versus 2020 and second semester 2019 (prepandemic) versus the second semester 2020 (pandemic). Results: In the analysis of second semester 2019 versus the second semester 2020, in blood samples, increased resistance to oxacillin (15.2% vs. 36.9%), erythromycin (25.7% vs. 42.8%), and clindamycin (24.8% vs. 43.3%) (p ≤ 0.01) was detected for Staphylococcus aureus, to imipenem (13% vs. 23.4%) and meropenem (11.2% vs. 21.4) (p ≤ 0.01), for Klebsiella pneumoniae. In all specimens, increased ampicillin and tetracycline resistance was detected for Enterococcus faecium (p ≤ 0.01). In cefepime, meropenem, levofloxacin, and gentamicin (p ≤ 0.01), resistance was detected for Escherichia coli; and in piperacillin-tazobactam, cefepime, imipenem, meropenem, ciprofloxacin, levofloxacin, and gentamicin (p ≤ 0.01), resistance was detected for Pseudomonas aeruginosa. Conclusion: Antimicrobial resistance increased in Mexico during the COVID-19 pandemic. The increase in oxacillin resistance for S. aureus and carbapenem resistance for K. pneumoniae recovered from blood specimens deserves special attention. In addition, an increase in erythromycin resistance in S. aureus was detected, which may be associated with high azithromycin use. In general, for Acinetobacter baumannii and P. aeruginosa, increasing resistance rates were detected.


Assuntos
Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , COVID-19/epidemiologia , Farmacorresistência Bacteriana Múltipla , Humanos , México/epidemiologia , Testes de Sensibilidade Microbiana , Pandemias , SARS-CoV-2
5.
PLoS One ; 16(3): e0248614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730101

RESUMO

AIM: This report presents phenotypic and genetic data on the prevalence and characteristics of extended-spectrum ß-lactamases (ESBLs) and representative carbapenemases-producing Gram-negative species in Mexico. MATERIAL AND METHODS: A total of 52 centers participated, 43 hospital-based laboratories and 9 external laboratories. The distribution of antimicrobial resistance data for Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae complex, Acinetobacter baumannii complex, and Pseudomonas aeruginosa in selected clinical specimens from January 1 to March 31, 2020 was analyzed using the WHONET 5.6 platform. The following clinical isolates recovered from selected specimens were included: carbapenem-resistant Enterobacteriaceae, ESBL or carbapenem-resistant E. coli, and K. pneumoniae, carbapenem-resistant A. baumannii complex, and P. aeruginosa. Strains were genotyped to detect ESBL and/or carbapenemase-encoding genes. RESULTS: Among blood isolates, A. baumannii complex showed more than 68% resistance for all antibiotics tested, and among Enterobacteria, E. cloacae complex showed higher resistance to carbapenems. A. baumannii complex showed a higher resistance pattern for respiratory specimens, with only amikacin having a resistance lower than 70%. Among K. pneumoniae isolates, blaTEM, blaSHV, and blaCTX were detected in 68.79%, 72.3%, and 91.9% of isolates, respectively. Among E. coli isolates, blaTEM, blaSHV, and blaCTX were detected in 20.8%, 4.53%, and 85.7% isolates, respectively. For both species, the most frequent genotype was blaCTX-M-15. Among Enterobacteriaceae, the most frequently detected carbapenemase-encoding gene was blaNDM-1 (81.5%), followed by blaOXA-232 (14.8%) and blaoxa-181(7.4%), in A. baumannii was blaOXA-24 (76%) and in P. aeruginosa, was blaIMP (25.3%), followed by blaGES and blaVIM (13.1% each). CONCLUSION: Our study reports that NDM-1 is the most frequent carbapenemase-encoding gene in Mexico in Enterobacteriaceae with the circulation of the oxacillinase genes 181 and 232. KPC, in contrast to other countries in Latin America and the USA, is a rare occurrence. Additionally, a high circulation of ESBL blaCTX-M-15 exists in both E. coli and K. pneumoniae.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Resistência beta-Lactâmica/genética , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Carbapenêmicos/uso terapêutico , Genes Bacterianos , Genótipo , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , México/epidemiologia , Testes de Sensibilidade Microbiana , Fenótipo , beta-Lactamases/genética
6.
Microb Drug Resist ; 26(11): 1372-1382, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32027229

RESUMO

Background: Surveillance of antimicrobial resistance (AMR) requires an international approach with national and local strategies. Our aim was to summarize a retrospective 10-year report of antibiotic resistance of gram-positive and gram-negative bacteria in Mexico. Methods: A total of 46 centers from 22 states of Mexico participated. Databases of AMR from January 2009 to December 2018 were included for most species. The 10-year period was divided into five 2-year periods. Results: For Staphylococcus aureus, a decrease in resistance in all specimens was observed for erythromycin and oxacillin (p < 0.0001 for each). For Enterobacter spp., resistance to meropenem increased for urine specimens (p = 0.0042). For Klebsiella spp., increased drug resistance in specimens collected from blood was observed for trimethoprim/sulfamethoxazole, gentamicin, tobramycin (p < 0.0001 for each), meropenem (p = 0.0014), and aztreonam (p = 0.0030). For Acinetobacter baumannii complex, high drug resistance was detected for almost all antibiotics, including carbapenems, except for tobramycin, which showed decreased resistance for urine, respiratory, and blood isolates (p < 0.0001 for each), and for amikacin, which showed a decrease in resistance in urine specimens (p = 0.0002). An increase in resistance to cefepime was found for urine, respiratory, and blood specimens (p < 0.0001 for each). For Pseudomonas aeruginosa, aztreonam resistance increased for isolates recovered from blood (p = 0.0001). Conclusion: This laboratory-based surveillance of antibiotic resistance shows that resistance is increasing for some antibiotics in different bacterial species in Mexico and highlights the need for continuous monitoring of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , México , Testes de Sensibilidade Microbiana/métodos , Estudos Retrospectivos
7.
PLoS One ; 14(3): e0209865, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30913243

RESUMO

AIM: We aimed to assess the resistance rates of antimicrobial-resistant, in bacterial pathogens of epidemiological importance in 47 Mexican centers. MATERIAL AND METHODS: In this retrospective study, we included a stratified sample of 47 centers, covering 20 Mexican states. Selected isolates considered as potential causatives of disease collected over a 6-month period were included. Laboratories employed their usual methods to perform microbiological studies. The results were deposited into a database and analyzed with the WHONET 5.6 software. RESULTS: In this 6-month study, a total of 22,943 strains were included. Regarding Gram-negatives, carbapenem resistance was detected in ≤ 3% in Escherichia coli, 12.5% in Klebsiella sp. and Enterobacter sp., and up to 40% in Pseudomonas aeruginosa; in the latter, the resistance rate for piperacillin-tazobactam (TZP) was as high as 19.1%. In Acinetobacter sp., resistance rates for cefepime, ciprofloxacin, meropenem, and TZP were higher than 50%. Regarding Gram-positives, methicillin resistance in Staphylococcus aureus (MRSA) was as high as 21.4%, and vancomycin (VAN) resistance reached up to 21% in Enterococcus faecium. Acinetobacter sp. presented the highest multidrug resistance (53%) followed by Klebsiella sp. (22.6%) and E. coli (19.4%). CONCLUSION: The multidrug resistance of Acinetobacter sp., Klebsiella sp. and E. coli and the carbapenem resistance in specific groups of enterobacteria deserve special attention in Mexico. Vancomycin-resistant enterococci (VRE) and MRSA are common in our hospitals. Our results present valuable information for the implementation of measures to control drug resistance.


Assuntos
Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/epidemiologia , Acinetobacter/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Feminino , Bactérias Gram-Negativas/classificação , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Klebsiella/efeitos dos fármacos , Masculino , México/epidemiologia , Prevalência , Estudos Retrospectivos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA