Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(9): e2214539120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812198

RESUMO

The head-direction (HD) system, a key neural circuit for navigation, consists of several anatomical structures containing neurons selective to the animal's head direction. HD cells exhibit ubiquitous temporal coordination across brain regions, independently of the animal's behavioral state or sensory inputs. Such temporal coordination mediates a single, stable, and persistent HD signal, which is essential for intact orientation. However, the mechanistic processes behind the temporal organization of HD cells are unknown. By manipulating the cerebellum, we identify pairs of HD cells recorded from two brain structures (anterodorsal thalamus and retrosplenial cortex) that lose their temporal coordination, specifically during the removal of the external sensory inputs. Further, we identify distinct cerebellar mechanisms that participate in the spatial stability of the HD signal depending on sensory signals. We show that while cerebellar protein phosphatase 2B-dependent mechanisms facilitate the anchoring of the HD signal on the external cues, the cerebellar protein kinase C-dependent mechanisms are required for the stability of the HD signal by self-motion cues. These results indicate that the cerebellum contributes to the preservation of a single and stable sense of direction.


Assuntos
Orientação , Tálamo , Animais , Orientação/fisiologia , Tálamo/fisiologia , Giro do Cíngulo , Cerebelo , Neurônios/fisiologia , Cabeça/fisiologia , Movimentos da Cabeça/fisiologia
2.
J Neurosci ; 42(11): 2268-2281, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35091502

RESUMO

During sleep, the widespread coordination of neuronal oscillations across both cortical and subcortical brain regions is thought to support various physiological functions. However, how sleep-related activity within the brain's largest sensorimotor structure, the cerebellum, is multiplexed with well-described sleep-related mechanisms in regions such as the hippocampus remains unknown. We therefore simultaneously recorded from the dorsal hippocampus and three distinct regions of the cerebellum (Crus I, lobule VI, and lobules II/III) in male mice during natural sleep. Local field potential (LFP) oscillations were found to be coordinated between these structures in a sleep stage-specific manner. During non-REM sleep, prominent δ frequency coherence was observed between lobule VI and hippocampus, whereas non-REM-associated hippocampal sharp-wave ripple activity evoked discrete LFP modulation in all recorded cerebellar regions, with the shortest latency effects in lobule VI. We also describe discrete phasic sharp potentials (PSPs), which synchronize across cerebellar regions and trigger sharp-wave ripple suppression. During REM, cerebellar δ phase significantly modulated hippocampal theta frequency, and this effect was greatest when PSPs were abundant. PSPs were phase-locked to cerebellar δ oscillation peak and hippocampal theta oscillation trough, respectively. Within all three cerebellar regions, prominent LFP oscillations were observed at both low (δ, <4 Hz) and very high frequencies (∼250 Hz) during non-REM and REM sleep. Intracerebellar cross-frequency analysis revealed that δ oscillations modulate those in the very high-frequency range. Together, these results reveal multiple candidate physiological mechanisms to support "offline," bidirectional interaction within distributed cerebello-hippocampal networks.SIGNIFICANCE STATEMENT Sleep is associated with widespread coordination of activity across a range of brain regions. However, little is known about how activity within the largest sensorimotor region of the brain, the cerebellum, is both intrinsically organized and links with higher-order structures, such as the hippocampus, during sleep. By making multisite local field potential recordings in naturally sleeping mice, we reveal and characterize multiple sleep stage-specific physiological mechanisms linking three distinct cerebellar regions with the hippocampus. Central to these physiological mechanisms is a prominent δ (<4 Hz) oscillation, which temporally coordinates both intracerebellar and cerebello-hippocampal network dynamics. Understanding this distributed network activity is important for gaining insight into cerebellar contributions to sleep-dependent processes, such as memory consolidation.


Assuntos
Hipocampo , Consolidação da Memória , Animais , Córtex Cerebelar , Hipocampo/fisiologia , Masculino , Camundongos , Sono/fisiologia , Sono REM
3.
Cerebellum ; 21(5): 826-837, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35752720

RESUMO

This review focuses on the functional and anatomical links between the cerebellum and the hippocampus and the role of their interplay in goal-directed navigation and spatial cognition. We will describe the interactions between the cerebellum and the hippocampus at different scales: a macroscopic scale revealing the joint activations of these two structures at the level of neuronal circuits, a mesoscopic scale highlighting the synchronization of neuronal oscillations, and finally a cellular scale where we will describe the activity of hippocampal neuronal assemblies following a targeted manipulation of the cerebellar system. We will take advantage of this framework to summarize the different anatomical pathways that may sustain this multiscale interaction. We will finally consider the possible influence of the cerebellum on pathologies traditionally associated with hippocampal dysfunction.


Assuntos
Hipocampo , Navegação Espacial , Cerebelo/fisiologia , Cognição , Neurônios/fisiologia , Navegação Espacial/fisiologia
4.
Cereb Cortex ; 25(11): 4146-54, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24947462

RESUMO

To examine the cerebellar contribution to human spatial navigation we used functional magnetic resonance imaging and virtual reality. Our findings show that the sensory-motor requirements of navigation induce activity in cerebellar lobules and cortical areas known to be involved in the motor loop and vestibular processing. By contrast, cognitive aspects of navigation mainly induce activity in a different cerebellar lobule (VIIA Crus I). Our results demonstrate a functional link between cerebellum and hippocampus in humans and identify specific functional circuits linking lobule VIIA Crus I of the cerebellum to medial parietal, medial prefrontal, and hippocampal cortices in nonmotor aspects of navigation. They further suggest that Crus I belongs to 2 nonmotor loops, involved in different strategies: place-based navigation is supported by coherent activity between left cerebellar lobule VIIA Crus I and medial parietal cortex along with right hippocampus activity, while sequence-based navigation is supported by coherent activity between right lobule VIIA Crus I, medial prefrontal cortex, and left hippocampus. These results highlight the prominent role of the human cerebellum in both motor and cognitive aspects of navigation, and specify the cortico-cerebellar circuits by which it acts depending on the requirements of the task.


Assuntos
Cerebelo/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Navegação Espacial/fisiologia , Adulto , Cerebelo/irrigação sanguínea , Feminino , Lateralidade Funcional , Hipocampo/irrigação sanguínea , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto/fisiologia , Vias Neurais/irrigação sanguínea , Oxigênio/sangue , Interface Usuário-Computador , Adulto Jovem
5.
Proc Natl Acad Sci U S A ; 110(50): 20302-7, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277825

RESUMO

CaV3.1 T-type channels are abundant at the cerebellar synapse between parallel fibers and Purkinje cells where they contribute to synaptic depolarization. So far, no specific physiological function has been attributed to these channels neither as charge carriers nor more specifically as Ca(2+) carriers. Here we analyze their incidence on synaptic plasticity, motor behavior, and cerebellar motor learning, comparing WT animals and mice where T-type channel function has been abolished either by gene deletion or by acute pharmacological blockade. At the cellular level, we show that CaV3.1 channels are required for long-term potentiation at parallel fiber-Purkinje cell synapses. Moreover, basal simple spike discharge of the Purkinje cell in KO mice is modified. Acute or chronic T-type current blockade results in impaired motor performance in particular when a good body balance is required. Because motor behavior integrates reflexes and past memories of learned behavior, this suggests impaired learning. Indeed, subjecting the KO mice to a vestibulo-ocular reflex phase reversal test reveals impaired cerebellum-dependent motor learning. These data identify a role of low-voltage activated calcium channels in synaptic plasticity and establish a role for CaV3.1 channels in cerebellar learning.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/metabolismo , Cerebelo/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Células de Purkinje/metabolismo , Sinapses/metabolismo , Animais , Benzamidas , Canais de Cálcio Tipo T/genética , Movimentos Oculares/fisiologia , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Piperidinas , Teste de Desempenho do Rota-Rod/efeitos adversos
6.
J Neurosci ; 34(48): 15861-9, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25429128

RESUMO

The NMDA receptor plays a key role in synaptic plasticity and its disruption leads to impaired spatial representation in the CA1 area of the hippocampus, with place cells exhibiting larger place fields (McHugh et al., 1996). Place fields are defined by the spatial and nonspatial inputs of a given place and context, by intrinsic network processes, such as phase precession, but also by the matching of these inputs to a pre-existing spatial representation. Larger place fields may be a consequence of spatially widened firing upon a single crossing of a place field, or of increased variability in place field positions across traversals. We addressed this question by monitoring CA1 place cell activity, with tetrodes, in control and KO mice lacking the NMDA receptor in this region. In individual crossings of the field, we found no difference between genotypes in place field size; the larger, overall place field size turns out to be a consequence of jitter across trials. We suggest that this jitter reflects a deficit in the matching of current spatial inputs to the stored spatial representation of the track. This is supported by the finding that deficits in place field size and spatial information are rescued by extensive exposure of the mouse to the track, which may echo an increased influence of memory retrieval processes in CA3 on firing in CA1.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/deficiência , Animais , Masculino , Camundongos , Camundongos Knockout
7.
Cerebellum ; 14(1): 59-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25630873

RESUMO

The contribution of the cerebellum to the non-motor aspects of spatial navigation is now established, but the mechanisms of its participation remain unclear. The L7-PKCI mouse model, in which inhibited PKC activity suppresses parallel fiber-Purkinje cell long-term depression (LTD), provides the opportunity to study their spatial abilities in the absence of any motor impairment. L7-PKCI mice are deficient in the spatial but not the cued version of the watermaze task. Their performances are preserved when alleys guide their trajectories in the starmaze task, suggesting that cerebellar PKC-dependent mechanisms are required for the production of an optimal trajectory toward a goal. Furthermore, electrophysiological recordings in freely moving L7-PKCI mice revealed that their hippocampal place cell properties are affected when they have to rely on self motion information: in the absence of external information as well as in a conflicting situation between self-motion and external information. This suggests that the cerebellum is involved in the processing of self-motion information and is required for the construction of the spatial representation in the hippocampus.


Assuntos
Cerebelo/fisiologia , Navegação Espacial/fisiologia , Animais
8.
Med Sci (Paris) ; 31(2): 203-8, 2015 Feb.
Artigo em Francês | MEDLINE | ID: mdl-25744268

RESUMO

The Nobel Prize in Medecine or Physiology for 2014 has been awarded to three neuroscientists: John O'Keefe, May-Britt Moser and Edvard Moser for "their discoveries of cells that constitute a positioning system in the brain". This rewards innovative ideas which led to the development of intracerebral recording techniques in freely moving animals, thus providing links between behavior and physiology. This prize highlights how neural activity sustains our ability to localize ourselves and move around in the environment. This research provides key insights on how the brain drives behavior.


Assuntos
Mapeamento Encefálico , Prêmio Nobel , Comportamento Espacial/fisiologia , Animais , Mapeamento Encefálico/instrumentação , Mapeamento Encefálico/métodos , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Comportamento Exploratório/fisiologia , Hipocampo/fisiologia , História do Século XXI , Humanos , Aprendizagem/fisiologia , Memória Episódica , Orientação/fisiologia , Reconhecimento Fisiológico de Modelo/fisiologia , Percepção Espacial/fisiologia , Ritmo Teta/fisiologia
9.
J Neurosci ; 33(22): 9546-62, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23719821

RESUMO

Neuronal maturation during development is a multistep process regulated by transcription factors. The transcription factor RORα (retinoic acid-related orphan receptor α) is necessary for early Purkinje cell (PC) maturation but is also expressed throughout adulthood. To identify the role of RORα in mature PCs, we used Cre-lox mouse genetic tools in vivo that delete it specifically from PCs between postnatal days 10-21. Up to 14 d of age, differences between mutant and control PCs were not detectable: both were mono-innervated by climbing fibers (CFs) extending along their well-developed dendrites with spiny branchlets. By week 4, mutant mice were ataxic, some PCs had died, and remaining PC soma and dendrites were atrophic, with almost complete disappearance of spiny branchlets. The innervation pattern of surviving RORα-deleted PCs was abnormal with several immature characteristics. Notably, multiple functional CF innervation was reestablished on these mature PCs, simultaneously with the relocation of CF contacts to the PC soma and their stem dendrite. This morphological modification of CF contacts could be induced even later, using lentivirus-mediated depletion of rora from adult PCs. These data show that the late postnatal expression of RORα cell-autonomously regulates the maintenance of PC dendritic complexity, and the CF innervation status of the PC (dendritic vs somatic contacts, and mono-innervation vs multi-innervation). Thus, the differentiation state of adult neurons is under the control of transcription factors; and in their absence, adult neurons lose their mature characteristics and acquire some characteristics of an earlier developmental stage.


Assuntos
Fibras Nervosas/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Células de Purkinje/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Comportamento Animal/fisiologia , Contagem de Células , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , DNA/genética , Fatores de Transcrição Forkhead/genética , Vetores Genéticos , Humanos , Imuno-Histoquímica , Relações Interpessoais , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Força Muscular/genética , Força Muscular/fisiologia , Mutação/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Reação em Cadeia da Polimerase , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Proteínas Repressoras/genética , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética
10.
J Neurosci ; 32(6): 1942-52, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22323707

RESUMO

Episodic memory impairment is a hallmark for early diagnosis of Alzheimer's disease. Most actual tests used to diagnose Alzheimer's disease do not assess the spatiotemporal properties of episodic memory and lead to false-positive or -negative diagnosis. We used a newly developed, nonverbal navigation test for Human, based on the objective experimental testing of a spatiotemporal experience, to differentially Alzheimer's disease at the mild stage (N = 16 patients) from frontotemporal lobar degeneration (N = 11 patients) and normal aging (N = 24 subjects). Comparing navigation parameters and standard neuropsychological tests, temporal order memory appeared to have the highest predictive power for mild Alzheimer's disease diagnosis versus frontotemporal lobar degeneration and normal aging. This test was also nonredundant with classical neuropsychological tests. As a conclusion, our results suggest that temporal order memory tested in a spatial navigation task may provide a selective behavioral marker of Alzheimer's disease.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Degeneração Lobar Frontotemporal/psicologia , Memória/fisiologia , Testes Neuropsicológicos , Comportamento Espacial/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/psicologia , Diagnóstico Diferencial , Feminino , Degeneração Lobar Frontotemporal/diagnóstico , Humanos , Masculino , Transtornos da Memória/diagnóstico , Transtornos da Memória/psicologia , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Fatores de Tempo
11.
Proc Natl Acad Sci U S A ; 107(32): 14466-71, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660746

RESUMO

The hippocampus is crucial for both spatial navigation and episodic memory, suggesting that it provides a common function to both. Here we adapt a spatial paradigm, developed for rodents, for use with functional MRI in humans to show that activation of the right hippocampus predicts the use of an allocentric spatial representation, and activation of the left hippocampus predicts the use of a sequential egocentric representation. Both representations can be identified in hippocampal activity before their effect on behavior at subsequent choice-points. Our results suggest that, rather than providing a single common function, the two hippocampi provide complementary representations for navigation, concerning places on the right and temporal sequences on the left, both of which likely contribute to different aspects of episodic memory.


Assuntos
Lateralidade Funcional/fisiologia , Hipocampo/fisiologia , Rememoração Mental/fisiologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Percepção Espacial , Percepção do Tempo
12.
iScience ; 26(3): 106200, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36922992

RESUMO

The cerebellum contributes to goal-directed navigation abilities and place coding in the hippocampus. Here we investigated its contribution to foraging strategies. We recorded hippocampal neurons in mice with impaired PKC-dependent cerebellar functions (L7-PKCI) and in their littermate controls while they performed a task where they were rewarded for visiting a subset of hidden locations. We found that L7-PKCI and control mice developed different foraging strategies: while control mice repeated spatial sequences to maximize their rewards, L7-PKCI mice persisted to use a random foraging strategy. Sequential foraging was associated with more place cells exhibiting theta-phase precession and theta rate modulation. Recording in the dark showed that PKC-dependent cerebellar functions controlled how self-motion cues contribute to the selectivity of place cells to both position and direction. Thus, the cerebellum contributes to the development of optimal sequential paths during foraging, possibly by controlling how self-motion and theta signals contribute to place cell coding.

13.
Autism Res ; 16(2): 280-293, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495045

RESUMO

Cerebellar abnormalities have been reported in autism spectrum disorder (ASD). Beyond its role in hallmark features of ASD, the cerebellum and its connectivity with forebrain structures also play a role in navigation. However, the current understanding of navigation abilities in ASD is equivocal, as is the impact of the disorder on the functional anatomy of the cerebellum. In the present study, we investigated the navigation behavior of a population of ASD and typically developing (TD) adults related to their brain anatomy as assessed by structural and functional MRI at rest. We used the Starmaze task, which permits assessing and distinguishing two complex navigation behaviors, one based on allocentric learning and the other on egocentric learning of a route with multiple decision points. Compared to TD controls, individuals with ASD showed similar exploration, learning, and strategy performance and preference. In addition, there was no difference in the structural or functional anatomy of the cerebellar circuits involved in navigation between the two groups. The findings of our work suggest that navigation abilities, spatio-temporal memory, and their underlying circuits are preserved in individuals with ASD.


Assuntos
Transtorno do Espectro Autista , Adulto , Humanos , Encéfalo , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Aprendizagem , Imageamento por Ressonância Magnética
14.
Front Mol Neurosci ; 16: 1139118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008785

RESUMO

Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.

15.
Trends Neurosci ; 45(5): 337-338, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35219523

RESUMO

In a recent study, Streng and colleagues revealed that targeted activation of a specific fastigial output of the cerebellum can powerfully inhibit hippocampal seizures in mice. This study provides insights into how the cerebellum impacts hippocampal activity and opens the way to possible applications for treating temporal lobe epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Animais , Cerebelo , Hipocampo/fisiologia , Humanos , Camundongos , Convulsões
16.
J Neurosci ; 30(40): 13265-71, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20926652

RESUMO

Learning a new goal-directed behavioral task often requires the improvement of at least two processes, including an enhanced stimulus-response association and an optimization of the execution of the motor response. The cerebellum has recently been shown to play a role in acquiring goal-directed behavior, but it is unclear to what extent it contributes to a change in the stimulus-response association and/or the optimization of the execution of the motor response. We therefore designed the stimulus-dependent water Y-maze conditioning task, which allows discrimination between both processes, and we subsequently subjected Purkinje cell-specific mutant mice to this new task. The mouse mutants L7-PKCi, which suffer from impaired PKC-dependent processes such as parallel fiber to Purkinje cell long-term depression (PF-PC LTD), were able to acquire the stimulus-response association, but exhibited a reduced optimization of their motor performance. These data show that PF-PC LTD is not required for learning a stimulus-response association, but they do suggest that a PKC-dependent process in cerebellar Purkinje cells is required for optimization of motor responses.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebelar/fisiologia , Condicionamento Operante/fisiologia , Objetivos , Células de Purkinje/enzimologia , Animais , Córtex Cerebelar/citologia , Depressão Sináptica de Longo Prazo/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Movimento/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Regiões Promotoras Genéticas/genética , Proteína Quinase C/fisiologia , Natação/fisiologia
17.
Neurobiol Aging ; 102: 129-138, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33765426

RESUMO

To test the hypothesis that ApoE4 may be involved in cognitive deficits associated with aging, we investigated the impact of APOE4 status and aging on the flexibility and memory components of spatial learning in mice. Young adult (6 months) and middle-aged (14 months) ApoE4, ApoE3 and C57BL/6 male mice were tested for flexibility in an aquatic Y-maze, and for spatio-temporal memory acquisition in the Starmaze. Our results revealed a flexibility deficit of the 6-month-old ApoE4 mice compared to controls. However, this deficit was not associated with spatio-temporal memory deficit at the same age. Importantly, the ApoE4 flexibility deficit did not increase with age, nor turn into memory deficit, or was able to predict individual variations of memory performance at 14 months. By contrast, control ApoE3 mice showed a decline of flexibility at 14 months resulting in performance similar to that of ApoE4. Overall, our results suggest that ApoE4 could be associated with an acceleration of the flexibility decrease otherwise observed in normal aging.


Assuntos
Apolipoproteína E4 , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Envelhecimento/psicologia , Animais , Apolipoproteína E4/genética , Biomarcadores , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Masculino , Memória , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Aprendizagem Espacial , Navegação Espacial
18.
Data Brief ; 37: 107266, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34381853

RESUMO

This article describes navigation data of 14 month-old APPPS1 and C57Bl6 in the Starmaze task. These data were acquired as positive controls of memory deficit in a model of the familial form of Alzheimers's disease (see Schmitt et al., Flexibility as a marker of early cognitive decline in humanized Apolipoprotein E ε4 (ApoE4) mice, Neurobiol Aging, 2021). They were acquired in a reduced version of the Starmaze environment and accompanied by a number of acquisitions in different control groups at 6 and 14 months to assess the robustness of the procedure and its associated memory scores. These data illustrate the extraction of a variety of navigation scores (including search strategy, spatial learning and memory) and provide a reference of navigation data in the Starmaze task for healthy 6-month-old controls, normal aging and a model of pathological memory deficit.

19.
Life Sci Alliance ; 4(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34544751

RESUMO

Elevated amyloid precursor protein (APP) expression in the choroid plexus suggests an important role for extracellular APP metabolites such as sAPPα in cerebrospinal fluid. Despite widespread App brain expression, we hypothesized that specifically targeting choroid plexus expression could alter animal physiology. Through various genetic and viral approaches in the adult mouse, we show that choroid plexus APP levels significantly impact proliferation in both subventricular zone and hippocampus dentate gyrus neurogenic niches. Given the role of Aß peptides in Alzheimer disease pathogenesis, we also tested whether favoring the production of Aß in choroid plexus could negatively affect niche functions. After AAV5-mediated long-term expression of human mutated APP specifically in the choroid plexus of adult wild-type mice, we observe reduced niche proliferation, reduced hippocampus APP expression, behavioral defects in reversal learning, and deficits in hippocampal long-term potentiation. Our findings highlight the unique role played by the choroid plexus in regulating brain function and suggest that targeting APP in choroid plexus may provide a means to improve hippocampus function and alleviate disease-related burdens.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Plexo Corióideo/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Hipocampo/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Elife ; 102021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33661101

RESUMO

Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.


Assuntos
Proteínas Inativadoras do Complemento/genética , Aprendizagem , Proteínas de Membrana/genética , Atividade Motora/genética , Plasticidade Neuronal/genética , Animais , Proteínas Inativadoras do Complemento/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA