Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(21): e2202012119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588457

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS­CoV-2) is a worldwide health concern, and new treatment strategies are needed. Targeting inflammatory innate immunity pathways holds therapeutic promise, but effective molecular targets remain elusive. Here, we show that human caspase-4 (CASP4) and its mouse homolog, caspase-11 (CASP11), are up-regulated in SARS­CoV-2 infections and that CASP4 expression correlates with severity of SARS­CoV-2 infection in humans. SARS­CoV-2­infected Casp11−/− mice were protected from severe weight loss and lung pathology, including blood vessel damage, compared to wild-type (WT) mice and mice lacking the caspase downstream effector gasdermin-D (Gsdmd−/−). Notably, viral titers were similar regardless of CASP11 knockout. Global transcriptomics of SARS­CoV-2­infected WT, Casp11−/−, and Gsdmd−/− lungs identified restrained expression of inflammatory molecules and altered neutrophil gene signatures in Casp11−/− mice. We confirmed that protein levels of inflammatory mediators interleukin (IL)-1ß, IL-6, and CXCL1, as well as neutrophil functions, were reduced in Casp11−/− lungs. Additionally, Casp11−/− lungs accumulated less von Willebrand factor, a marker for endothelial damage, but expressed more Kruppel-Like Factor 2, a transcription factor that maintains vascular integrity. Overall, our results demonstrate that CASP4/11 promotes detrimental SARS­CoV-2­induced inflammation and coagulopathy, largely independently of GSDMD, identifying CASP4/11 as a promising drug target for treatment and prevention of severe COVID-19.


Assuntos
COVID-19 , Caspases Iniciadoras/metabolismo , SARS-CoV-2 , Tromboinflamação , Animais , COVID-19/enzimologia , COVID-19/patologia , Caspases Iniciadoras/genética , Progressão da Doença , Humanos , Pulmão/patologia , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença , Tromboinflamação/enzimologia , Tromboinflamação/genética
2.
PLoS Pathog ; 18(3): e1010093, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35325013

RESUMO

Mycobacterium tuberculosis (Mtb) and SARS-CoV-2 (CoV2) are the leading causes of death due to infectious disease. Although Mtb and CoV2 both cause serious and sometimes fatal respiratory infections, the effect of Mtb infection and its associated immune response on secondary infection with CoV2 is unknown. To address this question we applied two mouse models of COVID19, using mice which were chronically infected with Mtb. In both model systems, Mtb-infected mice were resistant to the pathological consequences of secondary CoV2 infection, and CoV2 infection did not affect Mtb burdens. Single cell RNA sequencing of coinfected and monoinfected lungs demonstrated the resistance of Mtb-infected mice is associated with expansion of T and B cell subsets upon viral challenge. Collectively, these data demonstrate that Mtb infection conditions the lung environment in a manner that is not conducive to CoV2 survival.


Assuntos
COVID-19 , Coinfecção , Mycobacterium tuberculosis , Doença Aguda , Animais , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2
3.
Cytokine ; 158: 155993, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007427

RESUMO

Allele bias is an epigenetic mechanism wherein only the maternal- or paternal-derived allele of a gene is preferentially expressed. Allele bias is used by T cells to regulate expression of numerous genes, including those which govern their development and response to cytokines. Here we demonstrate that human TH cell expression of the cytokine receptor gene IL12RB1 is subject to allele bias, and the extent to which this bias occurs is influenced by cells' differentiation status and two polymorphic sites in the IL12RB1 3'UTR. The single nucleotide polymorphisms (SNPs) at these sites, rs3746190 and rs404733, function to increase expression of their encoding allele. Modeling suggests this is due to a stabilizing effect of these SNPs on the predicted mRNA secondary structure. The SNP rs3746190 is also proximal to the predicted binding site of microRNA miR-1277, raising the possibility that miR-1277 cannot exert suppression in the presence of rs3746190. Functional experiments demonstrate, however, that miR-1277 suppression of IL12RB1 3'UTR expression-which itself has not been previously reported-is nevertheless independent of rs3746190. Collectively, these data demonstrate that rs3746190 and rs404733 are functional SNPs which regulate IL12RB1 allele bias in human TH cells.


Assuntos
Regiões 3' não Traduzidas , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-12 , Linfócitos T Auxiliares-Indutores , Regiões 3' não Traduzidas/genética , Alelos , Sítios de Ligação , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Receptores de Interleucina-12/genética
4.
J Infect Dis ; 220(11): 1843-1847, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332447

RESUMO

Nontuberculous mycobacteria (NTM) infect children with increasing frequency worldwide. Using blood and lymph node tissue from children with NTM lymphadenitis, and uninfected lymph node tissue from community controls, we evaluated helper T (TH) cells in functional assays of TH1/TH17 differentiation and measured the concentration of their associated cytokines at the site of infection. Circulating TH cells from infected children were attenuated in their TH1/TH17 differentiation capacity and expressed less interferon γ and interleukin 17 after polyclonal stimulation. Similar differences were observed at the site of infection, where most cytokine concentrations were unchanged relative to controls. Our data are consistent with a model wherein TH1/TH17 differentiation is attenuated in NTM-infected children.


Assuntos
Diferenciação Celular , Infecções por Mycobacterium/patologia , Micobactérias não Tuberculosas/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adolescente , Sangue/imunologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Interferon gama/análise , Interleucina-17/análise , Linfonodos/imunologia , Masculino , Infecções por Mycobacterium/imunologia
6.
Sci Rep ; 12(1): 14545, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008435

RESUMO

There is an urgent need for evidence-based engineering controls to reduce transmission of SARS-CoV-2, which causes COVID-19. Although ultraviolet (UV) light is known to inactivate coronaviruses, conventional UV lamps contain toxic mercury and emit wavelengths (254 nm) that are more hazardous to humans than krypton chlorine excimer lamps emitting 222 nm (UV222). Here we used culture and molecular assays to provide the first dose response for SARS-CoV-2 solution exposed to UV222. Culture assays (plaque infectivity to Vero host) demonstrated more than 99.99% disinfection of SARS-CoV-2 after a UV222 dose of 8 mJ/cm2 (pseudo-first order rate constant = 0.64 cm2/mJ). Immediately after UV222 treatment, RT-qPCR assays targeting the nucleocapsid (N) gene demonstrated ~ 10% contribution of N gene damage to disinfection kinetics, and an ELISA assay targeting the N protein demonstrated no contribution of N protein damage to disinfection kinetics. Molecular results suggest other gene and protein damage contributed more to disinfection. After 3 days incubation with host cells, RT-qPCR and ELISA kinetics of UV222 treated SARS-CoV-2 were similar to culture kinetics, suggesting validity of using molecular assays to measure UV disinfection without culture. These data provide quantitative disinfection kinetics which can inform implementation of UV222 for preventing transmission of COVID-19.


Assuntos
COVID-19 , Desinfecção , COVID-19/prevenção & controle , Cloro , Desinfecção/métodos , Humanos , SARS-CoV-2 , Raios Ultravioleta
7.
Sci Rep ; 12(1): 12377, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858977

RESUMO

The vaccine Mycobacterium bovis Bacillus Calmette-Guérin (BCG) elicits an immune response that is protective against certain forms of tuberculosis (TB); however, because BCG efficacy is limited it is important to identify alternative TB vaccine candidates. Recently, the BCG deletion mutant and vaccine candidate BCGΔBCG1419c was demonstrated to survive longer in intravenously infected BALB/c mice due to enhanced biofilm formation, and better protected both BALB/c and C57BL/6 mice against TB-induced lung pathology during chronic stages of infection, relative to BCG controls. BCGΔBCG1419c-elicited protection also associated with lower levels of proinflammatory cytokines (i.e. IL6, TNFα) at the site of infection in C57BL/6 mice. Given the distinct immune profiles of BCG- and BCGΔBCG1419c-immunized mice during chronic TB, we set out to determine if there are early immunological events which distinguish these two groups, using multi-dimensional flow cytometric analysis of the lungs and other tissues soon after immunization. Our results demonstrate a number of innate and adaptive response differences between BCG- and BCGΔBCG1419c-immunized mice which are consistent with the latter being longer lasting and potentially less inflammatory, including lower frequencies of exhausted CD4+ T helper (TH) cells and higher frequencies of IL10-producing T cells, respectively. These studies suggest the use of BCGΔBCG1419c may be advantageous as an alternative TB vaccine candidate.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose Pulmonar , Tuberculose , Animais , Vacina BCG , Imunidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tuberculose/prevenção & controle , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA