Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Bacteriol ; 206(1): e0042623, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38174933

RESUMO

Bile acids (BAs) are cholesterol-derived molecules that aid in digestion and nutrient absorption, regulate host metabolic processes, and influence physiology of the gut microbiota. Both the host and its microbiome contribute to enzymatic modifications that shape the chemical diversity of BAs in the gut. Several bacterial species have been reported to conjugate standard amino acids to BAs, but it was not known if bacteria conjugate BAs to other amine classes. Here, we show that Bacteroides fragilis strain P207, isolated from a bacterial bloom in the J-pouch of a patient with ulcerative colitis pouchitis, conjugates standard amino acids and the neuroactive amines γ-aminobutyric acid (GABA) and tyramine to deoxycholic acid. We extended this analysis to other human gut isolates and identified species that are competent to conjugate GABA and tyramine to primary and secondary BAs, and further identified diverse BA-GABA and BA-tyramine amides in human stool. A longitudinal metabolomic analysis of J-pouch contents of the patient from whom B. fragilis P207 was isolated revealed highly reduced levels of secondary bile acids and a shifting BA amide profile before, during, and after onset of pouchitis, including temporal changes in several BA-GABA amides. Treatment of pouchitis with ciprofloxacin was associated with a marked reduction of nearly all BA amides in the J-pouch. Our study expands the known repertoire of conjugated bile acids produced by bacteria to include BA conjugates to GABA and tyramine and demonstrates that these molecules are present in the human gut. IMPORTANCE BAs are modified in multiple ways by host enzymes and the microbiota to produce a chemically diverse set of molecules that assist in the digestive process and impact many physiological functions. This study reports the discovery of bacterial species that conjugate the neuroactive amines, GABA and tyramine, to primary and secondary BAs. We further present evidence that BA-GABA and BA-tyramine conjugates are present in the human gut, and document a shifting BA-GABA profile in a human pouchitis patient before, during, and after inflammation and antibiotic treatment. GABA and tyramine are common metabolic products of the gut microbiota and potent neuroactive molecules. GABA- and tyramine-conjugated BAs may influence receptor-mediated regulatory mechanisms of humans and their gut microbes, and absorption of these molecules and their entry into enterohepatic circulation may impact host physiology at distal tissue sites. This study defines new conjugated bile acids in the human gut.


Assuntos
Ácidos e Sais Biliares , Pouchite , Humanos , Aminoácidos , Ácido gama-Aminobutírico , Aminas , Catálise , Amidas
2.
Rapid Commun Mass Spectrom ; 35(24): e9207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34599535

RESUMO

RATIONALE: Aminoindanes are one class of many new psychoactive substances that have emerged over the last decade. Analogues of 2-aminoindane (2-AI) are being encountered in crime laboratories and analytical data for most aminoindanes are limited. Interpretation and optimization of gas chromatography-mass spectrometry data will enhance reliability in characterizing aminoindanes. METHODS: This study focuses on the electron ionization mass spectrometric fragmentation of eight aminoindane analogues and the gas chromatographic separation of these eight aminoindane analogues using four different column stationary phases, Rxi®-1Sil MS, Rxi®-5Sil MS, Rxi®-35Sil MS, and Rxi®-624Sil MS. Split injection (25:1) was utilized and each column had the same configuration (30 m × 25 mm × 0.25 µm), with the exception of the Rxi®-624Sil MS column (30 m × 25 mm ×1.4 µm). RESULTS: Mass spectra showed strong molecular ions for all aminoindanes, except for rasagiline that produced a uniquely abundant [M - 1] ion. Other characteristic fragmentation that was present for all the aminoindanes included indane and indene ions (m/z 115-117), the tropylium ion (m/z 91), and subsequent loss of diene to produce smaller ions that followed: phenyl (m/z 77), cyclopentadienyl (m/z 65), cyclobutadienyl (m/z 51), and cyclopropenyl (m/z 39). CONCLUSIONS: Separation of eight aminoindanes was optimized, and linear retention indices were determined for the compounds on four capillary columns. Based on the retention data, all eight aminoindanes were resolved on an Rxi®-624Sil MS column. Each aminoindane exhibited unique fragmentation ions in the mass spectra to distinguish between similar analogues. The results of this study will strengthen the analytical profiles of 2-AI and seven analogues, assisting forensic scientists in their analysis and identification of these substances.

3.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496653

RESUMO

Species of the Bacteroidales order are among the most abundant and stable bacterial members of the human gut microbiome with diverse impacts on human health. While Bacteroidales strains and species are genomically and functionally diverse, order-wide comparative analyses are lacking. We cultured and sequenced the genomes of 408 Bacteroidales isolates from healthy human donors representing nine genera and 35 species and performed comparative genomic, gene-specific, mobile gene, and metabolomic analyses. Families, genera, and species could be grouped based on many distinctive features. However, we also show extensive DNA transfer between diverse families, allowing for shared traits and strain evolution. Inter- and intra-specific diversity is also apparent in the metabolomic profiling studies. This highly characterized and diverse Bacteroidales culture collection with strain-resolved genomic and metabolomic analyses can serve as a resource to facilitate informed selection of strains for microbiome reconstitution.

4.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766138

RESUMO

Clostridioides difficile (C. difficile) strains belonging to the epidemic BI/NAP1/027 (RT027) group have been associated with increased transmissibility and disease severity. In addition to the major toxin A and toxin B virulence factors, RT027 strains also encode the CDT binary toxin. Our lab previously identified a toxigenic RT027 isolate, ST1-75, that is avirulent in mice despite densely colonizing the colon. Here, we show that coinfecting mice with the avirulent ST1-75 and virulent R20291 strains protects mice from colitis due to rapid clearance of the virulent strain and persistence of the avirulent strain. Although avirulence of ST1-75 is due to a mutation in the cdtR gene, which encodes a response regulator that modulates the production of all three C. difficile toxins, the ability of ST1-75 to protect against acute colitis is not directly attributable to the cdtR mutation. Metabolomic analyses indicate that the ST1-75 strain depletes amino acids more rapidly than the R20291 strain and supplementation with amino acids ablates ST1-75's competitive advantage, suggesting that the ST1-75 strain limits the growth of virulent R20291 bacteria by amino acid depletion. Since the germination kinetics and sensitivity to the co-germinant glycine are similar for the ST1-75 and R20291 strains, our results identify the rapidity of in vivo nutrient depletion as a mechanism providing strain-specific, virulence-independent competitive advantages to different BI/NAP1/027 strains. They also suggest that the ST1-75 strain may, as a biotherapeutic agent, enhance resistance to CDI in high-risk patients.

5.
J Am Med Dir Assoc ; 24(11): 1773-1778.e2, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37634547

RESUMO

OBJECTIVE: Nurse turnover can compromise the quality and continuity of home health care. Scope of practice laws, which determine the tasks nurses are allowed to perform and delegate, are an important element of autonomy and vary across states. In this study, we used human resource records from a multistate home health organization to examine the relationship between nurse turnover and whether nurses can delegate tasks to unlicensed aides. DESIGN: A retrospective, cross-sectional analysis. SETTING AND PARTICIPANTS: The study sample included 1820 licensed practical nurses and 3309 registered nurses, who spanned 30 states. The study period was 2016 through 2018. METHODS: We used weighted least squares to study the relationship between nurse turnover for registered and licensed practical nurses and task delegation across state-years. We measured task delegation continuously (0-16 tasks) and as a binary variable (14 or more tasks, which indicated the state was in the top half of the distribution). RESULTS: Across state-years, the turnover rate was 30.8% for licensed practical nurses and 36.8% for registered nurses. Although there was no significant relationship between task delegation and turnover among registered nurses, we found that states in which nurses could delegate the most tasks had lower turnover rates among licensed practical nurses. CONCLUSION AND IMPLICATIONS: The ability to delegate tasks to unlicensed aides was correlated with lower turnover rates among licensed practical nurses, but not among registered nurses. This suggests that the ability to delegate tasks is more likely to affect the workload of licensed practical nurses. This also points to a potential and unexplored element of expanding the scope of practice for nurses: reduced turnover. Given the added work-related hazards associated with home health care, including working in isolation, a lack of social recognition, and inadequate reimbursement, states should consider whether changes in their policy environment could benefit nurses working in home health.


Assuntos
Serviços de Assistência Domiciliar , Âmbito da Prática , Humanos , Estudos Transversais , Estudos Retrospectivos , Carga de Trabalho
6.
J Forensic Sci ; 68(4): 1148-1161, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37282977

RESUMO

Aminoindanes are a class of novel psychoactive substances (NPSs) that have become more prevalent over the past decade. GC-MS is often utilized for identifying seized drugs and is well regarded for its ability to separate mixtures. However, certain aminoindanes have similar mass spectral data and require specific gas chromatographic stationary phases for separation. Derivatization is an alternative method that can be applied to GC-MS to enhance chromatographic results, providing more selective analysis in seized-drug identification. This study investigates derivatization techniques to provide options for forensic science laboratories in accurately identifying aminoindanes. Three derivatization reagents, N-methyl-bis(trifluoroacetamide) (MBTFA), heptafluorobutyric anhydride (HFBA), and ethyl chloroformate (ECF) were evaluated for the analysis of eight aminoindanes by GC-MS using two common gas chromatographic stationary phases, Rxi®-5Sil MS and Rxi®-1Sil MS. All three derivatization methods successfully isolated eight aminoindanes, including the isomers 4,5-methylenedioxy-2-aminoindane (4,5-MDAI), and 5,6-methylenedioxy-2-aminoindane (5,6-MDAI) that could not be differentiated prior to derivatization. Reduced peak tailing and increased abundance were observed after derivatization for all the compounds, and mass spectra of the derivatives contained individualizing fragment ions that allowed for further characterization of the aminoindanes. This excluded 4,5-MDAI and 5,6-MDAI as they shared the same characteristic ions and were only distinguishable by their retention times. All three derivatization techniques used in this study allow for successful characterization of the aminoindanes and give forensic science laboratories flexibility in their analysis approach when they encounter these compounds.

7.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37808758

RESUMO

Bile acids (BAs) are cholesterol-derived molecules that aid in digestion and nutrient absorption, regulate host metabolic processes, and influence physiology of the gut microbiota. Both the host and its microbiome contribute to enzymatic modifications that shape the chemical diversity of BAs in the gut. Several bacterial species have been reported to conjugate standard amino acids to BAs, but it was not known if bacteria conjugate BAs to other amine classes. Here, we show that Bacteroides fragilis strain P207, isolated from a bacterial bloom in the J-pouch of a patient with ulcerative colitis (UC) pouchitis, conjugates standard amino acids and the neuroactive amines γ-aminobutyric acid (GABA) and tyramine to deoxycholic acid. We extended this analysis to other human gut isolates and identified species that are competent to conjugate GABA and tyramine to primary and secondary BAs, and further identified diverse BA-GABA and BA-tyramine amides in human stool. A longitudinal metabolomic analysis of J-pouch contents of the patient from whom B. fragilis P207 was isolated revealed highly reduced levels of secondary bile acids and a shifting BA amide profile before, during, and after onset of pouchitis, including temporal changes in several BA-GABA amides. Treatment of pouchitis with ciprofloxacin was associated with a marked reduction of nearly all BA amides in the J-pouch. Our study expands the known repertoire of conjugated bile acids produced by bacteria to include BA conjugates to GABA and tyramine and demonstrates that these molecules are present in the human gut.

8.
J Colloid Interface Sci ; 614: 75-83, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35085905

RESUMO

Chemical contaminants are becoming an increasingly greater concern for water quality and it is well known that interactions with geochemical interfaces impact the fate and transport of these contaminants in the environment. In this study, we investigated the interactions of one such chemical contaminant, monoethanolamine (MEA), with oxide surfaces, particularly titanium dioxide (TiO2) and iron oxide (α-Fe2O3). Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to probe the adsorption behavior of MEA on titanium dioxide (TiO2) and iron oxide (α-Fe2O3) nanoparticles as a function of pH and other environmental conditions including concentration and ionic strength. Both the extent and initial rates of adsorption of MEA on these oxide surfaces increases with increasing pH. Adsorption on these oxide surfaces increases with solution concentration until saturation occurs and MEA adsorbs more readily at higher pH. Furthermore, adsorption decreases with increasing ionic strength, demonstrating the importance of electrostatic interactions to this process. Based on these results, a mechanistic picture emerges for the interaction of MEA with titanium dioxide and iron oxide across a range of pH values. Overall, this study provides important insights into the surface chemistry and interactions between an alkanolamine and geochemical oxide interfaces.


Assuntos
Nanopartículas , Óxidos , Adsorção , Etanolamina , Concentração de Íons de Hidrogênio , Nanopartículas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química
9.
Nat Commun ; 13(1): 6615, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329015

RESUMO

Respiratory failure and mortality from COVID-19 result from virus- and inflammation-induced lung tissue damage. The intestinal microbiome and associated metabolites are implicated in immune responses to respiratory viral infections, however their impact on progression of severe COVID-19 remains unclear. We prospectively enrolled 71 patients with COVID-19 associated critical illness, collected fecal specimens within 3 days of medical intensive care unit admission, defined microbiome compositions by shotgun metagenomic sequencing, and quantified microbiota-derived metabolites (NCT #04552834). Of the 71 patients, 39 survived and 32 died. Mortality was associated with increased representation of Proteobacteria in the fecal microbiota and decreased concentrations of fecal secondary bile acids and desaminotyrosine (DAT). A microbiome metabolic profile (MMP) that accounts for fecal secondary bile acids and desaminotyrosine concentrations was independently associated with progression of respiratory failure leading to mechanical ventilation. Our findings demonstrate that fecal microbiota composition and microbiota-derived metabolite concentrations can predict the trajectory of respiratory function and death in patients with severe SARS-Cov-2 infection and suggest that the gut-lung axis plays an important role in the recovery from COVID-19.


Assuntos
COVID-19 , Pneumonia , Insuficiência Respiratória , Humanos , SARS-CoV-2 , Ácidos e Sais Biliares , Imunidade
10.
Dalton Trans ; 46(28): 9163-9171, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28675227

RESUMO

We report the synthesis, interconversions and X-ray structures of a set of [mFe-nS]-type carbonyl clusters (where S = S2-, S22- or RS-; m = 2-3; n = 1-2). All of the clusters have been identified and characterized by single crystal X-ray diffraction, IR and 13C NMR. Reduction of the parent neutral dimer [µ2-(SPh)2Fe2(CO)6] (1) with KC8 affords an easily separable ∼1 : 1 mixture of the anionic, dimeric thiolate dimer K[Fe2(SPh)(CO)6(µ-CO)] (2) and the dianionic, sulfido trimer [K(benzo-15-crown-5)2]2[Fe3(µ3-S)(CO)9] (3). Oxidation of 2 with diphenyl-disulfide (Ph2S2) cleanly returns the starting material 1. The Ph-S bond in 1 can be cleaved to form sulfide trimer 3. Oxidation of sulfido trimer 3 with [Fc](PF6) in the presence of S8 cleanly affords the all-inorganic persulfide dimer [µ2-(S)2Fe2(CO)6] (4), a thermodynamically stable product. The inverse reactions to form 3 (dianion) from 4 (neutral) were not successful, and other products were obtained. For example, reduction of 4 with KC8 afforded the mixed valence Fe(i)/Fe(ii) species [((FeS2)(CO)6)2FeII]2- (5), in which the two {Fe2S2(CO)6}2- units serve as bidendate ligands to a Fe(ii) center. Another isolated product (THF insoluble portion) was recrystallized in MeCN to afford [K(benzo-15-crown-5)2]2[((Fe2S)(CO)6)2(µ-S)2] (6), in which a persulfide dianion bridges two {2Fe-S} moieties (dimer of dimers). Finally, to close the interconversion loop, we converted the persulfide dimer 4 into the thiolate dimer 1 by reduction with KC8 followed by reaction with the diphenyl iodonium salt [Ph2I](PF6), in modest yield. These reactions underscore the thermodynamic stability of the dimers 1 and 4, as well as the synthetic and crystallization versatility of using the crown/K+ counterion system for obtaining structural information on highly reduced iron-sulfur-carbonyl clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA