Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 52(9): e13798, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35467758

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disease that affects motor neurons. This disease is associated with oxidative stress especially in mutant superoxide dismutase 1 (mutSOD1) patients. However, less is known for the most prevalent sporadic ALS form, due to a lack of disease models. Here, we studied oxidative stress profiles in lymphoblasts from ALS patients with mutSOD1 or unknown (undSOD1) mutations. METHODS: mutSOD1 and undSOD1 lymphoblasts, as well as sex/age-matched controls (3/group) were obtained from Coriell and divided into 46 years-old-men (C1), 46 years-old-women (C2) or 26/27 years-old-men (C3) cohorts. Growth curves were performed, and several parameters associated with redox homeostasis were evaluated, including SOD activity and expression, general oxidative stress levels, lipid peroxidation, response to oxidative stimulus, glutathione redox cycle, catalase expression, and activity, and Nrf2 transcripts. Pooled (all cohorts) and paired (intra-cohort) statistical analyses were performed, followed by clustering and principal component analyses (PCA). RESULTS: Although a high heterogeneity among lymphoblast redox profiles was found between cohorts, clustering analysis based on 7 parameters with high chi-square ranking (total SOD activity, oxidative stress levels, catalase transcripts, SOD1 protein levels, metabolic response to mM concentrations of tert-butyl hydroperoxide, glutathione reductase activity, and Nrf2 transcript levels) provided a perfect cluster segregation between samples from healthy controls and ALS (undSOD1 and mutSOD1), also visualized in the PCA. CONCLUSIONS: Our results show distinct redox signatures in lymphoblasts from mutSOD1, undSOD1 and healthy controls that can be used as therapeutic targets for ALS drug development.


Assuntos
Esclerose Lateral Amiotrófica , Superóxido Dismutase-1 , Adulto , Esclerose Lateral Amiotrófica/genética , Catalase/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Superóxido Dismutase-1/genética
2.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445070

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HD gene. The disease is characterized by neurodegeneration, particularly in the striatum and cortex. The first symptoms usually appear in mid-life and include cognitive deficits and motor disturbances that progress over time. Despite being a genetic disorder with a known cause, several mechanisms are thought to contribute to neurodegeneration in HD, and numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. Although current clinical trials may lead to the identification or refinement of treatments that are likely to improve the quality of life of those living with HD, major efforts continue to be invested at the pre-clinical level, with numerous studies testing novel approaches that show promise as disease-modifying strategies. This review offers a detailed overview of the currently approved treatment options for HD and the clinical trials for this neurodegenerative disorder that are underway and concludes by discussing potential disease-modifying treatments that have shown promise in pre-clinical studies, including increasing neurotropic support, modulating autophagy, epigenetic and genetic manipulations, and the use of nanocarriers and stem cells.


Assuntos
Doença de Huntington/terapia , Animais , Autofagia , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Modelos Animais de Doenças , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia
3.
J Neurosci ; 37(10): 2776-2794, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28123081

RESUMO

Transcriptional deregulation and changes in mitochondrial bioenergetics, including pyruvate dehydrogenase (PDH) dysfunction, have been described in Huntington's disease (HD). We showed previously that the histone deacetylase inhibitors (HDACIs) trichostatin A and sodium butyrate (SB) ameliorate mitochondrial function in cells expressing mutant huntingtin. In this work, we investigated the effect of HDACIs on the regulation of PDH activity in striatal cells derived from HD knock-in mice and YAC128 mice. Mutant cells exhibited decreased PDH activity and increased PDH E1alpha phosphorylation/inactivation, accompanied by enhanced protein levels of PDH kinases 1 and 3 (PDK1 and PDK3). Exposure to dichloroacetate, an inhibitor of PDKs, increased mitochondrial respiration and decreased production of reactive oxygen species in mutant cells, emphasizing PDH as an interesting therapeutic target in HD. Treatment with SB and sodium phenylbutyrate, another HDACI, recovered cell viability and overall mitochondrial metabolism in mutant cells. Exposure to SB also suppressed hypoxia-inducible factor-1 (HIF-1α) stabilization and decreased the transcription of the two most abundant PDK isoforms, PDK2 and PDK3, culminating in increased PDH activation in mutant cells. Concordantly, PDK3 knockdown improved mitochondrial function, emphasizing the role of PDK3 inactivation on the positive effects achieved by SB treatment. YAC128 mouse brain presented higher mRNA levels of PDK1-3 and PDH phosphorylation and decreased energy levels that were significantly ameliorated after SB treatment. Furthermore, enhanced motor learning and coordination were observed in SB-treated YAC128 mice. These results suggest that HDACIs, particularly SB, promote the activity of PDH in the HD brain, helping to counteract HD-related deficits in mitochondrial bioenergetics and motor function.SIGNIFICANCE STATEMENT The present work provides a better understanding of mitochondrial dysfunction in Huntington's disease (HD) by showing that the pyruvate dehydrogenase (PDH) complex is a promising therapeutic target. In particular, the histone deacetylase inhibitor sodium butyrate (SB) may indirectly (through reduced hypoxia-inducible factor 1 alpha stabilization) decrease the expression of the most abundant PDH kinase isoforms (e.g., PDK3), ameliorating PDH activity and mitochondrial metabolism and further affecting motor behavior in HD mice, thus constituting a promising agent for HD neuroprotective treatment.


Assuntos
Inibidores de Histona Desacetilases/administração & dosagem , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Neurônios/enzimologia , Fármacos Neuroprotetores/administração & dosagem , Complexo Piruvato Desidrogenase/metabolismo , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Neurônios/efeitos dos fármacos , Resultado do Tratamento
4.
Neuroscience ; 524: 269-284, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169164

RESUMO

Schizophrenia (SZ) is a neurodevelopmental-associated disorder strongly related to environmental factors, such as hypoxia. Because there is no cure for SZ or any pharmacological approach that could revert hypoxia-induced cellular damages, we evaluated whether modulators of sirtuins could abrogate hypoxia-induced mitochondrial deregulation as a neuroprotective strategy. Firstly, astrocytes from control (Wistar) and Spontaneously Hypertensive Rats (SHR), a model of both SZ and neonatal hypoxia, were submitted to chemical hypoxia. Then, cells were exposed to different concentrations of Nicotinamide (NAM), Resveratrol (Resv), and Sirtinol (Sir) for 48hrs. Our data indicate that sirtuins modulation reduces cell death increasing the acetylation of histone 3. This outcome is related to the rescue of loss of mitochondrial membrane potential, changes in mitochondrial calcium buffering capacity, decreased O2-rad levels and increased expression of metabolic regulators (Nrf-1 and Nfe2l2) and mitochondrial content. Such findings are relevant not only for hypoxia-associated conditions, named pre-eclampsia but also for SZ since prenatal hypoxia is a relevant environmental factor related to this burdensome neuropsychiatric disorder.


Assuntos
Esquizofrenia , Sirtuínas , Feminino , Gravidez , Ratos , Animais , Sirtuínas/metabolismo , Esquizofrenia/metabolismo , Ratos Wistar , Mitocôndrias/metabolismo , Hipóxia/metabolismo , Ratos Endogâmicos SHR
5.
Behav Brain Res ; 448: 114436, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37061200

RESUMO

The relationship between serotonin dysfunction and schizophrenia commenced with the discovery of the effects of lysergic acid diethylamide (LSD) that has high affinity for 5-HT2A receptors. Activation of these receptors produces perceptual and behavioural changes such as illusions, visual hallucinations and locomotor hyperactivity. Using prepulse inhibition (PPI) of the acoustic startle, which is impaired in schizophrenia,we aimed to investigate:i) the existence of a direct and potentially inhibitory neural pathway between the inferior colliculus (IC) and the pedunculopontine tegmental nucleus (PPTg) involved in the mediation of PPI responses by a neural tract tracing procedure;ii) if the microinjection of the 5-HT2A receptors agonist DOI in IC would activate neurons in this structure and in the PPTg by a c-Fos protein immunohistochemistry study;iii) whether the deficits in PPI responses, observed after the administration of DOI in the IC, could be prevented by the concomitant microinjection of the GABAA receptor antagonist bicuculline in the PPTg.Male Wistar rats were used in this study. An IC-PPTg reciprocated neuronal pathway was identified by neurotracing. The number of c-Fos labelled cells was lower in the DOI group in IC and PPTg, suggesting that this decrease could be due to the high levels of GABA in both structures. The concomitant microinjections of bicuculline in PPTg and DOI in IC prevented the PPI deficit observed after the IC microinjection of DOI. Our findings suggest that IC 5-HT2A receptors may be at least partially involved in the regulation of inhibitory pathways mediating PPI response in IC and PPTg structures.


Assuntos
Colículos Inferiores , Núcleo Tegmental Pedunculopontino , Ratos , Animais , Masculino , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/fisiologia , Receptores de GABA-A , Receptor 5-HT2A de Serotonina , Bicuculina/farmacologia , Serotonina/farmacologia , Ratos Wistar
6.
Stem Cell Reports ; 18(5): 1090-1106, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37163979

RESUMO

Mitochondrial dysfunction involving mitochondria-associated ER membrane (MAM) dysregulation is implicated in the pathogenesis of late-onset neurodegenerative diseases, but understanding is limited for rare early-onset conditions. Loss of the MAM-resident protein WFS1 causes Wolfram syndrome (WS), a rare early-onset neurodegenerative disease that has been linked to mitochondrial abnormalities. Here we demonstrate mitochondrial dysfunction in human induced pluripotent stem cell-derived neuronal cells of WS patients. VDAC1 is identified to interact with WFS1, whereas loss of this interaction in WS cells could compromise mitochondrial function. Restoring WFS1 levels in WS cells reinstates WFS1-VDAC1 interaction, which correlates with an increase in MAMs and mitochondrial network that could positively affect mitochondrial function. Genetic rescue by WFS1 overexpression or pharmacological agents modulating mitochondrial function improves the viability and bioenergetics of WS neurons. Our data implicate a role of WFS1 in regulating mitochondrial functionality and highlight a therapeutic intervention for WS and related rare diseases with mitochondrial defects.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Síndrome de Wolfram , Humanos , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Mutação
7.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086404

RESUMO

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Humanos , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Autofagia , Niacinamida/metabolismo
8.
Methods Mol Biol ; 2549: 103-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34490597

RESUMO

Autophagy is an evolutionarily conserved catabolic pathway for the degradation of cytoplasmic constituents in eukaryotic cells. It is the primary disposal route for selective removal of undesirable cellular materials like aggregation-prone proteins and damaged organelles for maintaining cellular homeostasis, and for bulk degradation of intracellular macromolecules and recycling the breakdown products for providing energy homeostasis during starvation. These functions of autophagy are attributed to cellular survival and thus pertinent for human health; however, malfunction of this process is detrimental to the cells, particularly for post-mitotic neurons. Thus, basal autophagy is vital for maintaining neuronal homeostasis, whereas autophagy dysfunction contributes to neurodegeneration. Defective autophagy has been demonstrated in several neurodegenerative diseases wherein pharmacological induction of autophagy is beneficial in many of these disease models. Elucidating the mechanisms underlying defective autophagy is imperative for the development of therapies targeting this process. Disease-affected human neuronal cells can be established from patient-derived human induced pluripotent stem cells (hiPSCs) that provide a clinically relevant platform for studying disease mechanisms and drug discovery. Thus, modeling autophagy dysfunction as a phenotypic readout in patient-derived neurons provides a more direct platform for investigating the mechanisms underlying defective autophagy and evaluating the therapeutic efficacy of autophagy inducers. Toward this, several hiPSC-derived neuronal cell models of neurodegenerative diseases have been employed. In this review, we highlight the key methodologies pertaining to hiPSC maintenance and neuronal differentiation, and studying autophagy at an endogenous level in hiPSC-derived neuronal cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Autofagia , Homeostase , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
9.
Methods Mol Biol ; 2549: 1-21, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35347693

RESUMO

Mitochondria are responsible for many vital pathways governing cellular homeostasis, including cellular energy management, heme biosynthesis, lipid metabolism, cellular proliferation and differentiation, cell cycle regulation, and cellular viability. Electron transport and ADP phosphorylation coupled with proton pumping through the mitochondrial complexes contribute to the preservation of mitochondrial membrane potential (ΔΨm). Importantly, mitochondrial polarization is essential for reactive oxygen species (ROS) production and cytosolic calcium (Ca2+) handling. Thus, changes in mitochondrial oxidative phosphorylation (OXPHOS), ΔΨm, and ATP/ADP may occur in parallel or stimulate each other. Brain cells like neurons are heavily reliant on mitochondrial OXPHOS for its high-energy demands, and hence improper mitochondrial function is detrimental for neuronal survival. Indeed, several neurodegenerative disorders are associated with mitochondrial dysfunction. Modeling this disease-relevant phenotype in neuronal cells differentiated from patient-derived human induced pluripotent stem cells (hiPSCs) provide an appropriate cellular platform for studying the disease pathology and drug discovery. In this review, we describe high-throughput analysis of crucial parameters related to mitochondrial function in hiPSC-derived neurons. These methodologies include measurement of ΔΨm, intracellular Ca2+, oxidative stress, and ATP/ADP levels using fluorescence probes via a microplate reader. Benefits of such an approach include analysis of mitochondrial parameters on a large population of cells, simultaneous analysis of different cell lines and experimental conditions, and for drug screening to identify compounds restoring mitochondrial function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Methods Mol Biol ; 2240: 207-230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423236

RESUMO

Depletion of oxygen (O2) levels and reduction in the ATP synthesis (or even its complete blockage) are important characteristics of mitochondrial dysfunction; features that are often correlated with neurodegeneration. The measurement of oxygen consumption rate (OCR) is thus essential to evaluate cellular metabolism, survival, and neuroprotective strategies. In the present chapter, we describe the oxygen consumption assay using a Clark-type oxygen electrode in different types of samples named cells suspension (from primary and established cell culture), brain slices (ex vivo), and fresh brain tissues. In addition, we demonstrate herein how the program Oxygraph can be used in order to analyze the data and different approaches to normalize it.


Assuntos
Trifosfato de Adenosina/metabolismo , Bioensaio , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Animais , Encéfalo/efeitos dos fármacos , Linhagem Celular , Humanos , Técnicas In Vitro , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Cultura Primária de Células , Ratos , Fatores de Tempo
11.
Mol Neurobiol ; 58(7): 3015-3030, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33608825

RESUMO

Since psychiatric disorders are associated with changes in the development of the nervous system, an energy-dependent mechanism, we investigated whether mitochondrial inhibition during the critical neurodevelopment window in rodents would be able to induce metabolic alterations culminating in psychiatric-like behavior. We treated male Wistar rat puppies (P) with rotenone (Rot), an inhibitor of mitochondrial complex I, from postnatal days 5 to 11 (P5-P11). We demonstrated that at P60 and P120, Rot-treated animals showed hyperlocomotion and deficits in social interaction and aversive contextual memory, features observed in animal models of schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder. During adulthood, Rot-treated rodents also presented modifications in CBP and CREB levels in addition to a decrease in mitochondrial biogenesis and Nrf1 expression. Additionally, NFE2L2-activation was not altered in Rot-treated P60 and P120 animals; an upregulation of pNFE2L2/ NFE2L2 was only observed in P12 cortices. Curiously, ATP/ADP levels did not change in all ages evaluated. Rot administration in newborn rodents also promoted modification in Rest and Mecp2 expression, and in synaptic protein levels, named PSD-95, Synaptotagmin-1, and Synaptophysin in the adult rats. Altogether, our data indicate that behavioral abnormalities and changes in synaptic proteins in adulthood induced by neonatal Rot administration might be a result of adjustments in CREB pathways and alterations in mitochondrial biogenesis and Nrf1 expression, rather than a direct deficiency of energy supply, as previously speculated. Consequently, Rot-induced psychiatric-like behavior would be an outcome of alterations in neuronal paths due to mitochondrial deregulation.


Assuntos
Transtornos Mentais/induzido quimicamente , Transtornos Mentais/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Biogênese de Organelas , Rotenona/toxicidade , Fatores Etários , Animais , Animais Recém-Nascidos , Inseticidas/toxicidade , Masculino , Mitocôndrias/efeitos dos fármacos , Ratos , Ratos Wistar
12.
Psychopharmacology (Berl) ; 238(9): 2569-2585, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34089344

RESUMO

Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder.


Assuntos
Haloperidol/uso terapêutico , Esquizofrenia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Fenótipo , Ratos , Rotenona , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico
13.
Free Radic Biol Med ; 163: 163-179, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285261

RESUMO

SIRT3 is a major regulator of mitochondrial acetylome. Here we show that SIRT3 is neuroprotective in Huntington's disease (HD), a motor neurodegenerative disorder caused by an abnormal expansion of polyglutamines in the huntingtin protein (HTT). Protein and enzymatic analysis revealed that increased SIRT3 is a signature in several HD models, including human HD brain, which is regulated by oxidative species. While loss of SIRT3 further aggravated the oxidative phenotype, antioxidant treatment regularized SIRT3 levels. SIRT3 overexpression promoted the antioxidant effect in cells expressing mutant HTT, leading to enhanced mitochondrial function and balanced dynamics. Decreased Fis1 and Drp1 accumulation in mitochondria induced by SIRT3 expression favored mitochondrial elongation, while the SIRT3 activator ε-viniferin improved anterograde mitochondrial neurite transport, sustaining cell survival. Notably, SIRT3 fly-ortholog dSirt2 overexpression in HD flies ameliorated neurodegeneration and extended lifespan. These findings provide a link between oxidative stress and mitochondrial dysfunction hypotheses in HD and offer an opportunity for therapeutic development.


Assuntos
Doença de Huntington , Sirtuína 3 , Humanos , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neuroproteção , Estresse Oxidativo , Sirtuína 3/genética , Sirtuína 3/metabolismo
14.
J Ethnopharmacol ; 271: 113885, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539952

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scientific evidence supports the antioxidant, anti-inflammatory and anti-lipidemic properties of Euterpe oleracea Mart. (açaí), which all converge to reduce cardiovascular risks. Macerating the pulp of açaí fruit produces a viscous aqueous extract (AE) rich in flavonoids that is commonly used in food production. In addition to nutritional aspects, cardiovascular benefits are attributed to AE by traditional medicine. AIM OF THE STUDY: Evaluation of AE impact on blood flow in vivo in rats and investigation of the mechanism underlying this response in vitro in rat endothelial cells (RECs). MATERIALS AND METHODS: For the measurement of acute blood flow, a perivascular ultrasound probe was used in Wistar rats. The in vitro assays employed REC to evaluate: concentration (1-1000 µg/mL) and time response (2-180 min) of AE in MTT cell viability assays; nitric oxide (NO) levels measurement and intracellular calcium handling using DAF-2DA and Fluo-4-AM, respectively; cellular biopterin content by HPLC; activation of Akt pathway using western blot analysis. For the chemical analyses of AE, stock solutions of the standards (+)catechin and quercetin were used for obtaining linear calibration curves. Identification and quantification of flavonoids in AE were based on comparisons with the retention times, increase in peak area determine by co-injection of AE with standards, UV-Vis scan and standard curves of known spectra. Results were expressed as mean ± standard deviation and data were analyzed using ANOVA followed by Tukey's post-test (p < 0.05). RESULTS: Although in vivo data have revealed the participation of NO in increasing of acute blood flow on abdominal aorta, in vitro analysis demonstrated that vasodilatation AE-induced is not related to its direct action on endothelial cells inducing eNOS activation. Besides, we demonstrated in isolated endothelial cells that highest concentrations of AE caused a reduction in NO levels, effect that could be partly justified by inhibition of Akt phosphorylation which, in turn, could decrease NOS activation. The involvement of cell transduction pathways involving variations in intracellular calcium and biopterins concentration were discarded. The participation of catechin and quercetin, identified in AE, was postulated to induce the responses of AE in REC. CONCLUSIONS: Despite the responses in vitro, vasodilation prevailed in vivo, probably by activating intermediate pathways, validating a potential beneficial effect of AE in reducing cardiovascular risks.


Assuntos
Circulação Sanguínea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Euterpe/química , Extratos Vegetais/farmacologia , Animais , Biopterinas/metabolismo , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Frutas/química , Masculino , Óxido Nítrico/metabolismo , Extratos Vegetais/uso terapêutico , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Vasodilatação/efeitos dos fármacos , Água/química
15.
Front Neurosci ; 14: 679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760239

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive and devastating multifactorial neurodegenerative disorder. Although the pathogenesis of ALS is still not completely understood, numerous studies suggest that mitochondrial deregulation may be implicated in its onset and progression. Interestingly, mitochondrial deregulation has also been associated with changes in neural stem cells (NSC) proliferation, differentiation, and migration. In this review, we highlight the importance of mitochondrial function for neurogenesis, and how both processes are correlated and may contribute to the pathogenesis of ALS; we have focused primarily on preclinical data from animal models of ALS, since to date no studies have evaluated this link using human samples. As there is currently no cure and no effective therapy to counteract ALS, we have also discussed how improving neurogenic function by epigenetic modulation could benefit ALS. In support of this hypothesis, changes in histone deacetylation can alter mitochondrial function, which in turn might ameliorate cellular proliferation as well as neuronal differentiation and migration. We propose that modulation of epigenetics, mitochondrial function, and neurogenesis might provide new hope for ALS patients, and studies exploring these new territories are warranted in the near future.

16.
Mol Neurobiol ; 57(12): 5084-5102, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32840822

RESUMO

Amyotrophic lateral sclerosis (ALS) is a multifactorial and progressive neurodegenerative disease of unknown etiology. Due to ALS's unpredictable onset and progression rate, the search for biomarkers that allow the detection and tracking of its development and therapeutic efficacy would be of significant medical value. Considering that alterations of energy supply are one of ALS's main hallmarks and that a correlation has been established between gene expression in human brain tissue and peripheral blood mononuclear cells (PBMCs), the present work investigates whether changes in mitochondrial function could be used to monitor ALS. To achieve this goal, PBMCs from ALS patients and control subjects were used; blood sampling is a quite non-invasive method and is cost-effective. Different parameters were evaluated, namely cytosolic calcium levels, mitochondrial membrane potential, oxidative stress, and metabolic compounds levels, as well as mitochondrial dynamics and degradation. Altogether, we observed lower mitochondrial calcium uptake/retention, mitochondria depolarization, and redox homeostasis deregulation, in addition to a decrease in critical metabolic genes, a diminishment in mitochondrial biogenesis, and an augmentation in mitochondrial fission and autophagy-related gene expression. All of these changes can contribute to the decreased ATP and pyruvate levels observed in ALS PBMCs. Our data indicate that PBMCs from ALS patients show a significant mitochondrial dysfunction, resembling several findings from ALS' neural cells/models, which could be exploited as a powerful tool in ALS research. Our findings can also guide future studies on new pharmacological interventions for ALS since assessments of brain samples are challenging and represent a relevant limited strategy. Graphical abstract.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/genética , Biomarcadores/sangue , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Biogênese de Organelas , Adulto , Idoso , Antioxidantes/metabolismo , Autofagia/genética , Cálcio/metabolismo , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Potencial da Membrana Mitocondrial/genética , Pessoa de Meia-Idade , Mitocôndrias/genética , Dinâmica Mitocondrial/genética , Estresse Oxidativo/genética
17.
J Mol Biol ; 432(8): 2754-2798, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32044344

RESUMO

Autophagy is an intracellular degradation process that is essential for cellular survival, tissue homeostasis, and human health. The housekeeping functions of autophagy in mediating the clearance of aggregation-prone proteins and damaged organelles are vital for post-mitotic neurons. Improper functioning of this process contributes to the pathology of myriad human diseases, including neurodegeneration. Impairment in autophagy has been reported in several neurodegenerative diseases where pharmacological induction of autophagy has therapeutic benefits in cellular and transgenic animal models. However, emerging studies suggest that the efficacy of autophagy inducers, as well as the nature of the autophagy defects, may be context-dependent, and therefore, studies in disease-relevant experimental systems may provide more insights for clinical translation to patients. With the advancements in human stem cell technology, it is now possible to establish disease-affected cellular platforms from patients for investigating disease mechanisms and identifying candidate drugs in the appropriate cell types, such as neurons that are otherwise not accessible. Towards this, patient-derived human induced pluripotent stem cells (hiPSCs) have demonstrated considerable promise in constituting a platform for effective disease modeling and drug discovery. Multiple studies have utilized hiPSC models of neurodegenerative diseases to study autophagy and evaluate the therapeutic efficacy of autophagy inducers in neuronal cells. This review provides an overview of the regulation of autophagy, generation of hiPSCs via cellular reprogramming, and neuronal differentiation. It outlines the findings in various neurodegenerative disorders where autophagy has been studied using hiPSC models.


Assuntos
Autofagia , Diferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Animais , Humanos
18.
An Acad Bras Cienc ; 81(3): 467-75, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19722016

RESUMO

Transient increase in cytosolic (Cac2+) and mitochondrial Ca2+ (Ca m2+) are essential elements in the control of many physiological processes. However, sustained increases in Ca c2+ and Ca m2+ may contribute to oxidative stress and cell death. Several events are related to the increase in Ca m2+, including regulation and activation of a number of Ca2+ dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (ER) play pivotal roles in the maintenance of intracellular Ca2+ homeostasis and regulation of cell death. Several lines of evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes may lead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic cell death. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell death induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative and aging processes.


Assuntos
Envelhecimento/fisiologia , Apoptose/fisiologia , Sinalização do Cálcio/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Proteína X Associada a bcl-2/fisiologia , Animais , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/metabolismo , Degeneração Neural/etiologia
19.
Methods Mol Biol ; 1880: 389-428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30610712

RESUMO

Autophagy is a vital homeostatic pathway essential for cellular survival and human health. It primarily functions as an intracellular degradation process for the turnover of aggregation-prone proteins and unwanted organelles. Dysregulation of autophagy underlying diverse human diseases reduces cell viability, whereas stimulation of autophagy is cytoprotective in a number of transgenic disease models including neurodegenerative disorders. Thus, therapeutic exploitation of autophagy is considered a potential treatment strategy in certain human diseases, and therefore, chemical inducers of autophagy have tremendous biomedical relevance. In this review, we describe the in vitro screening platforms to identify autophagy modulators in mammalian cells using various methodologies including fluorescence and high-content imaging, flow cytometry, fluorescence and luminescence detection by microplate reader, immunoblotting, and immunofluorescence. The commonly used autophagy reporters in these screening platforms are either based on autophagy marker like LC3 or autophagy substrate such as aggregation-prone proteins or p62/SQSTM1. The reporters and assays for monitoring autophagy are evolving over time to become more sensitive in measuring autophagic flux with the capability of high-throughput applications for drug discovery. Here we highlight these developments and also describe the stringent secondary autophagy assays for characterizing the autophagy modulators arising from the primary screen. Since autophagy is implicated in myriad human physiological and pathological conditions, these technologies will enable identifying novel chemical modulators or genetic regulators of autophagy that will be of biomedical and fundamental importance to human health.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Bioensaio/métodos , Técnicas de Cultura de Células/métodos , Animais , Bioensaio/instrumentação , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Citometria de Fluxo/instrumentação , Citometria de Fluxo/métodos , Genes Reporter/genética , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Proteínas Associadas aos Microtúbulos , Proteína Sequestossoma-1/metabolismo , Transfecção/instrumentação , Transfecção/métodos
20.
Sci Rep ; 9(1): 18049, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792231

RESUMO

Schizophrenia (SZ) is a multifactorial mental disorder, which has been associated with a number of environmental factors, such as hypoxia. Considering that numerous neural mechanisms depends on energetic supply (ATP synthesis), the maintenance of mitochondrial metabolism is essential to keep cellular balance and survival. Therefore, in the present work, we evaluated functional parameters related to mitochondrial function, namely calcium levels, mitochondrial membrane potential, redox homeostasis, high-energy compounds levels and oxygen consumption, in astrocytes from control (Wistar) and Spontaneously Hypertensive Rats (SHR) animals exposed both to chemical and gaseous hypoxia. We show that astrocytes after hypoxia presented depolarized mitochondria, disturbances in Ca2+ handling, destabilization in redox system and alterations in ATP, ADP, Pyruvate and Lactate levels, in addition to modification in NAD+/NADH ratio, and Nfe2l2 and Nrf1 expression. Interestingly, intrauterine hypoxia also induced augmentation in mitochondrial biogenesis and content. Altogether, our data suggest that hypoxia can induce mitochondrial deregulation and a decrease in energy metabolism in the most prevalent cell type in the brain, astrocytes. Since SHR are also considered an animal model of SZ, our results can likewise be related to their phenotypic alterations and, therefore, our work also allow an increase in the knowledge of this burdensome disorder.


Assuntos
Astrócitos/patologia , Hipóxia Celular , Hipóxia Fetal/complicações , Mitocôndrias/patologia , Esquizofrenia/patologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Encéfalo/citologia , Encéfalo/patologia , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Hipóxia Fetal/patologia , Humanos , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Oxirredução , Consumo de Oxigênio , Gravidez , Cultura Primária de Células , Ratos , Ratos Endogâmicos SHR , Esquizofrenia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA