Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 185(25): 4717-4736.e25, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493752

RESUMO

Adult mammalian skin wounds heal by forming fibrotic scars. We report that full-thickness injuries of reindeer antler skin (velvet) regenerate, whereas back skin forms fibrotic scar. Single-cell multi-omics reveal that uninjured velvet fibroblasts resemble human fetal fibroblasts, whereas back skin fibroblasts express inflammatory mediators mimicking pro-fibrotic adult human and rodent fibroblasts. Consequently, injury elicits site-specific immune responses: back skin fibroblasts amplify myeloid infiltration and maturation during repair, whereas velvet fibroblasts adopt an immunosuppressive phenotype that restricts leukocyte recruitment and hastens immune resolution. Ectopic transplantation of velvet to scar-forming back skin is initially regenerative, but progressively transitions to a fibrotic phenotype akin to the scarless fetal-to-scar-forming transition reported in humans. Skin regeneration is diminished by intensifying, or enhanced by neutralizing, these pathologic fibroblast-immune interactions. Reindeer represent a powerful comparative model for interrogating divergent wound healing outcomes, and our results nominate decoupling of fibroblast-immune interactions as a promising approach to mitigate scar.


Assuntos
Rena , Cicatrização , Adulto , Animais , Humanos , Cicatriz/patologia , Fibroblastos/patologia , Transplante de Pele , Pele/patologia , Feto/patologia
2.
Exp Dermatol ; 26(6): 505-509, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28418596

RESUMO

Understanding the cellular interactions and molecular signals underlying hair follicle (HF) regeneration may have significant implications for restorative therapies for skin disease that diminish hair growth, whilst also serving to provide fundamental insight into the mechanisms underlying adult tissue regeneration. One of the major, yet underappreciated, players in this process is the underlying HF mesenchyme. Here, we provide an overview of a mesenchymal progenitor pool referred to as hair follicle dermal stem cells (hfDSCs), discuss their potential functions within the skin and their relationship to skin-derived precursors (SKPs), and consider unanswered questions about the function of these specialized fibroblasts. We contend that dermal stem cells provide an important reservoir of renewable dermal progenitors that may enable development of novel restorative therapies following hair loss, skin injury or disease.


Assuntos
Derme/citologia , Folículo Piloso/citologia , Pele/citologia , Células-Tronco/citologia , Animais , Linhagem da Célula , Membrana Celular/metabolismo , Fibroblastos/citologia , Humanos , Mesoderma , Regeneração , Fatores de Transcrição SOXB1/metabolismo , Cicatrização
3.
Int J Mol Sci ; 18(8)2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809791

RESUMO

The ability to respond to injury with tissue repair is a fundamental property of all multicellular organisms. The extracellular matrix (ECM), composed of fibrillar collagens as well as a number of other components is dis-regulated during repair in many organs. In many tissues, scaring results when the balance is lost between ECM synthesis and degradation. Investigating what disrupts this balance and what effect this can have on tissue function remains an active area of research. Recent advances in the imaging of fibrillar collagen using second harmonic generation (SHG) imaging have proven useful in enhancing our understanding of the supramolecular changes that occur during scar formation and disease progression. Here, we review the physical properties of SHG, and the current nonlinear optical microscopy imaging (NLOM) systems that are used for SHG imaging. We provide an extensive review of studies that have used SHG in skin, lung, cardiovascular, tendon and ligaments, and eye tissue to understand alterations in fibrillar collagens in scar tissue. Lastly, we review the current methods of image analysis that are used to extract important information about the role of fibrillar collagens in scar formation.


Assuntos
Cicatriz/metabolismo , Cicatriz/patologia , Colágeno/metabolismo , Microscopia Óptica não Linear/métodos , Animais , Humanos
4.
Am J Pathol ; 185(3): 631-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25701883

RESUMO

Heart failure, the leading cause of hospitalization of elderly patients, is correlated with myocardial fibrosis (ie, deposition of excess extracellular matrix proteins such as collagen). A key regulator of collagen homeostasis is lysyl oxidase (LOX), an enzyme responsible for cross-linking collagen fibers. Our objective was to ameliorate age-related myocardial fibrosis by disrupting collagen cross-linking through inhibition of LOX. The nonreversible LOX inhibitor ß-aminopropionitrile (BAPN) was administered by osmotic minipump to 38-week-old C57BL/6J male mice for 2 weeks. Sirius Red staining of myocardial cross sections revealed a reduction in fibrosis, compared with age-matched controls (5.84 ± 0.30% versus 10.17 ± 1.34%) (P < 0.05), to a level similar to that of young mice at 8 weeks (4.9 ± 1.2%). BAPN significantly reduced COL1A1 mRNA, compared with age-matched mice (3.5 ± 0.3-fold versus 15.2 ± 4.9-fold) (P < 0.05), suggesting that LOX is involved in regulation of collagen synthesis. In accord, fibrotic factor mRNA expression was reduced after BAPN. There was also a novel increase in Ly6C expression by resident macrophages. By interrupting collagen cross-linking by LOX, the BAPN treatment reduced myocardial fibrosis. A novel observation is that BAPN treatment modulated the transforming growth factor-ß pathway, collagen synthesis, and the resident macrophage population. This is especially valuable in terms of potential therapeutic targeting of collagen regulation and thereby age-related myocardial fibrosis.


Assuntos
Aminopropionitrilo/uso terapêutico , Colágeno/metabolismo , Cardiopatias/tratamento farmacológico , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Fatores Etários , Aminopropionitrilo/farmacologia , Animais , Fibrose/metabolismo , Fibrose/patologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Masculino , Camundongos , Miocárdio/patologia
5.
Wound Repair Regen ; 24(2): 263-74, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26749086

RESUMO

The gold standard treatment for full thickness injuries of the skin is autologous split-thickness skin grafting. This involves harvesting the epidermis and superficial dermis from healthy skin and transplanting it onto the prepared wound bed. The donor site regenerates spontaneously, but the appendages and cellular components from the dermal layer are excluded from the graft. As a result, the new tissue is inferior; the healed graft site is dry/itchy, has decreased elasticity, increased fragility, and altered sensory function. Because this dermal layer is composed of collagen and other extracellular matrix proteins, the aim was to characterize the changes in the dermal collagen after split thickness grafting that could contribute to a deficit in functionality. This will serve as a baseline for future studies designed to improve skin function using pharmacological or cell-based therapies for skin repair. A xenograft model whereby human split-thickness grafts were implanted into full-thickness defects on immunocompromised (athymic Nu/Nu) mice was used. The grafts were harvested 4 and 8 weeks later. The collagen microstructure was assessed with second harmonic generation with dual-photon microscopy and light polarization analysis. Collagen fiber stiffness and engagement stretch were estimated by fitting the results of biaxial mechanical tensile tests to a histo-mechanical constitutive model. The stiffness of the collagen fibril-proteoglycan complex increased from 682 ± 226 kPa/sr to 1016 ± 324 kPa/sr between 4 and 8 weeks postgrafting. At the microstructural level there were significant decreases in both thickness of collagen fibers (3.60 ± 0.34 µm vs. 2.10 ± 0.27 µm) and waviness ratio (2.04 ± 0.17 vs. 1.43 ± 0.08) of the collagen fibers postgrafting. The decrease of the macroscopic engagement stretch from 1.19 ± 0.11 to 1.09 ± 0.08 over time postgrafting mirrored the decrease in waviness measured at the microscopic level. This suggested that the integrity of the collagen fibers was compromised and contributed to the functional deficit of the skin postgrafting.


Assuntos
Queimaduras/patologia , Colágeno/metabolismo , Derme/citologia , Transplante Heterólogo , Cicatrização/fisiologia , Animais , Colágeno/ultraestrutura , Derme/transplante , Modelos Animais de Doenças , Matriz Extracelular/ultraestrutura , Sobrevivência de Enxerto , Humanos , Camundongos , Camundongos Nus , Fenômenos Fisiológicos da Pele
6.
Am J Pathol ; 182(3): 714-26, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23287510

RESUMO

Exposure of rodents to angiotensin II (AngII) is a common model of fibrosis. We have previously shown that cellular infiltration of bone marrow-derived progenitor cells (fibrocytes) occurs before deposition of extracellular matrix and is associated with the production of connective tissue growth factor (CTGF). In the present study, we characterized the role of CTGF in promoting fibrocyte accumulation and regulation after AngII exposure. In animals exposed to AngII using osmotic minipumps (2.0 µg/kg per min), myocardial CTGF mRNA peaked at 6 hours (21-fold; P < 0.01), whereas transforming growth factor-ß (TGF-ß) peaked at 3 days (fivefold; P < 0.05) compared with saline control. Early CTGF expression occurred before fibrocyte migration (1 day) into the myocardium or ECM deposition (3 days). CTGF protein expression was evident by day 3 of AngII exposure and seemed to be localized to resident cells. Isolated cardiomyocytes and microvascular endothelial cells responded to AngII with increased CTGF production (2.1-fold and 2.8-fold, respectively; P < 0.05), which was abolished with the addition of anti-TGF-ß neutralizing antibody. The effect of CTGF on isolated fibrocytes suggested a role in fibrocyte proliferation (twofold; P < 0.05) and collagen production (2.3-fold; P < 0.05). In summary, we provide strong evidence that AngII exposure first resulted in Smad2-dependent production of CTGF by resident cells (6 hours), well before the accumulation of fibrocytes or TGF-ß mRNA up-regulation. In addition, CTGF contributes to fibrocyte proliferation in the myocardium and enhances fibrocyte differentiation into a myofibroblast phenotype responsible for ECM deposition.


Assuntos
Angiotensina II/farmacologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Separação Celular , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Citocinas/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Crescimento Transformador beta/metabolismo
7.
Sci Adv ; 9(46): eadi5771, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967180

RESUMO

Despite their importance in tissue maintenance and repair, fibroblast diversity and plasticity remain poorly understood. Using single-cell RNA sequencing, we uncover distinct sclerotome-derived fibroblast populations in zebrafish, including progenitor-like perivascular/interstitial fibroblasts, and specialized fibroblasts such as tenocytes. To determine fibroblast plasticity in vivo, we develop a laser-induced tendon ablation and regeneration model. Lineage tracing reveals that laser-ablated tenocytes are quickly regenerated by preexisting fibroblasts. By combining single-cell clonal analysis and live imaging, we demonstrate that perivascular/interstitial fibroblasts actively migrate to the injury site, where they proliferate and give rise to new tenocytes. By contrast, perivascular fibroblast-derived pericytes or specialized fibroblasts, including tenocytes, exhibit no regenerative plasticity. Active Hedgehog (Hh) signaling is required for the proliferation of activated fibroblasts to ensure efficient tenocyte regeneration. Together, our work highlights the functional diversity of fibroblasts and establishes perivascular/interstitial fibroblasts as tenocyte progenitors that promote tendon regeneration in a Hh signaling-dependent manner.


Assuntos
Tenócitos , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas Hedgehog , Regeneração , Fibroblastos , Análise de Célula Única
8.
Nat Med ; 28(1): 201-211, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782790

RESUMO

Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using single-cell RNA sequencing and plasma proteomics, we discovered that, compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. Dexamethasone during severe COVID-19 affected circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion, potentially affecting outcomes. Our single-cell atlas (see 'Data availability' section) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.


Assuntos
COVID-19/imunologia , Citocinas/imunologia , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Neutrófilos/imunologia , Pneumonia Bacteriana/imunologia , Síndrome do Desconforto Respiratório/imunologia , Adulto , Idoso , COVID-19/complicações , COVID-19/genética , Comunicação Celular , Cromatografia Líquida , Regulação para Baixo , Feminino , Redes Reguladoras de Genes , Humanos , Imunidade Inata/imunologia , Interferons/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Pneumonia Bacteriana/complicações , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/genética , Prostaglandinas/imunologia , Proteômica , RNA-Seq , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/genética , SARS-CoV-2 , Índice de Gravidade de Doença , Fatores Sexuais , Análise de Célula Única , Espectrometria de Massas em Tandem , Tratamento Farmacológico da COVID-19
9.
Lab Invest ; 91(4): 565-78, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21116240

RESUMO

Myocardial fibrosis is characterized by significant extracellular matrix (ECM) deposition. The specific cellular mediators that contribute to the development of fibrosis are not well understood. Using a model of fibrosis with Angiotensin II (AngII) infusion, our aim was to characterize the cellular elements involved in the development of myocardial fibrosis. Male C57Bl/6 and Tie2-GFP mice were given AngII (2.0 mg/kg/min) or saline (control) via mini osmotic pumps for up to 7 days. Hearts were harvested, weighed and processed for analysis. Cellular infiltration and collagen deposition were quantified. Immunostaining was performed for specific markers of leukocytes (CD45, CD11b), myofibroblasts (SMA), endothelial cells (vWF) and hematopoietic progenitor cells (CD133). Bone marrow (BM) origin of infiltrating cells was assessed using GFP(+) chimeric animals. Relative qRT-PCR was performed for pro-fibrotic cytokines (transforming growth factor (TGF)-ß1, CTGF) as well as the chemokine stromal-derived factor (SDF)-1α. Myocardial-infiltrating cells were grown in vitro. AngII exposure resulted in multifocal myocardial cellular infiltration, which preceded extensive ECM deposition. A limited number of myocardial-infiltrating cells were positive for leukocyte markers but were significantly positive for myofibroblast (SMA) and endothelial cell (vWF) markers. However, using Tie2-GFP mice, where endothelial cells are GFP(+), myocardial-infiltrating cells were not GFP(+). Transcript levels for SDF-1α were significantly elevated at 1 day of AngII exposure suggesting that hematopoietic progenitor cells may be recruited. This was confirmed by positive CD133 staining of infiltrating cells and evident GFP(+) cellular infiltration when exposing GFP(+) BM chimeras to AngII. Furthermore, a significant number of CD133(+)/SMA(+) cells were grown in vitro from the myocardium of AngII-exposed animals (P<0.01). Myocardial ECM deposition is preceded by the infiltration of the myocardium with hematopoietic cells that express mesenchymal markers. These data suggest that mesenchymal progenitor cells are recruited, and may have a primary role, in the initiation of myocardial fibrosis.


Assuntos
Angiotensina II/administração & dosagem , Células-Tronco Mesenquimais/patologia , Miocárdio/patologia , Antígeno AC133 , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Células da Medula Óssea/metabolismo , Divisão Celular , Movimento Celular , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimera , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Glicoproteínas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Infusões Subcutâneas , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor TIE-2 , Fator de von Willebrand/metabolismo
10.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34313733

RESUMO

Pulmonary innate immunity is required for host defense; however, excessive neutrophil inflammation can cause life-threatening acute lung injury. B lymphocytes can be regulatory, yet little is known about peripheral transitional IgM+ B cells in terms of regulatory properties. Using single-cell RNA sequencing, we discovered eight IgM+ B cell subsets with unique gene regulatory networks in the lung circulation dominated by transitional type 1 B and type 2 B (T2B) cells. Lung intravital confocal microscopy revealed that T2B cells marginate in the pulmonary capillaries via CD49e and require CXCL13 and CXCR5. During lung inflammation, marginated T2B cells dampened excessive neutrophil vascular inflammation via the specialized proresolving molecule lipoxin A4 (LXA4). Exogenous CXCL13 dampened excessive neutrophilic inflammation by increasing marginated B cells, and LXA4 recapitulated neutrophil regulation in B cell-deficient mice during inflammation and fungal pneumonia. Thus, the lung microvasculature is enriched in multiple IgM+ B cell subsets with marginating capillary T2B cells that dampen neutrophil responses.


Assuntos
Linfócitos B/patologia , Pulmão/patologia , Neutrófilos/patologia , Pneumonia/patologia , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Linfócitos B/fisiologia , Capilares/patologia , Adesão Celular , Quimiocina CXCL13/metabolismo , Integrina alfa5/metabolismo , Microscopia Intravital , Lipoxinas/metabolismo , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Camundongos Mutantes , Pneumonia/diagnóstico por imagem , Receptores CXCR5/metabolismo , Análise de Célula Única
11.
Infect Immun ; 78(5): 2272-82, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20231405

RESUMO

Major impediments to developing a Chlamydia vaccine lie in identifying immunologically relevant T-cell antigens and delivery in a manner to stimulate protective immunity. Using an immunoproteomic approach, we previously identified three immunodominant Chlamydia T-cell antigens (PmpG-1, PmpE/F-2, and RplF). Because RplF has high homology to a human ortholog, it may not be suitable for human vaccine development. Therefore, in this study, we evaluated protection against Chlamydia infection in the genital tract in C57BL/6 mice immunized with Chlamydia-specific membrane proteins PmpG-1, PmpE/F-2, and major outer membrane protein (MOMP; as a reference) or a combination of them formulated with one of three adjuvants, CpG oligodeoxynucleotide (CpG-ODN), AbISCO-100 (AbISCO), or DDA/TDB (dimethyldioctadecylammonium bromide/D-(+)-trehalose 6,6'-dibehenate). The results show that immunization with the CpG-ODN formulation failed to provide protection against Chlamydia infection; the AbISCO formulation conferred moderate protection, and the DDA/TDB formulation showed the highest degree of protective efficacy. The combination of PmpG-1, PmpE/F-2, and MOMP proteins formulated with DDA/TDB exhibited the greatest degree of protection among all vaccine groups studied. Moreover, this vaccine combination also engendered significant protection in BALB/c mice, which have a different major histocompatibility complex (MHC) background. We measured cell-mediated immune cytokine responses in mice immunized with PmpG-1 mixed with each of the three adjuvants. The results demonstrate that mice immunized with the DDA/TDB formulation induced the strongest gamma interferon (IFN-gamma) and interleukin-17 (IL-17) responses, characterized by the highest frequency of IFN-gamma/tumor necrosis factor alpha (TNF-alpha) and IFN-gamma/IL-17 double-positive CD4(+) T cells. In conclusion, a Chlamydia vaccine based on the recombinant proteins PmpG-1, PmpE/F-2, and MOMP delivered in a DDA/TDB adjuvant conferred protection against infection that correlated with IFN-gamma/TNF-alpha and IFN-gamma/IL-17 double-positive CD4(+) T cells.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Chlamydia/prevenção & controle , Chlamydia muridarum/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/química , Infecções por Chlamydia/imunologia , Feminino , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
12.
Front Aging Neurosci ; 12: 174, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595489

RESUMO

The regenerative capacity of injured peripheral nerves is diminished with aging. To identify factors that contribute to this impairment, we compared the immune cell response in young vs. aged animals following nerve injury. First, we confirmed that macrophage accumulation is delayed in aged injured nerves which is due to defects in monocyte migration as a result of defects in site-specific recruitment signals in the aged nerve. Interestingly, impairment in both macrophage accumulation and functional recovery could be overcome by transplanting bone marrow from aged animals into young mice. That is, upon exposure to a youthful environment, monocytes/macrophages originating from the aged bone marrow behaved similarly to young cells. Transcriptional profiling of aged macrophages following nerve injury revealed that both pro- and anti-inflammatory genes were largely downregulated in aged compared to young macrophages. One ligand of particular interest was macrophage-associated secreted protein (MCP1), which exhibited a potent role in regulating aged axonal regrowth in vitro. Given that macrophage-derived MCP1 is significantly diminished in the aged injured nerve, our data suggest that age-associated defects in MCP1 signaling could contribute to the regenerative deficits that occur in the aged nervous system.

13.
Dev Cell ; 53(2): 185-198.e7, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32315612

RESUMO

Skin aging is accompanied by hair loss due to impairments in hair follicle (HF) epithelial progenitor cells and their mesenchymal niche. This inductive mesenchyme, called dermal papilla (DP), undergoes progressive cell loss and eventual miniaturization that contributes to HF pathogenesis. Using laser ablation and fate mapping, we show that HF dermal stem cells (hfDSCs) reconstitute the damaged DP and maintain hair growth, suggesting that hfDSC dysfunction may trigger degeneration of the inductive niche. Fate mapping over 24 months revealed progressive hfDSC depletion, and in vivo clonal analysis of aged hfDSCs showed impaired self-renewal and biased differentiation. Single-cell RNA-seq confirmed hfDSCs as a central precursor, giving rise to divergent mesenchymal trajectories. In aged skin, hfDSCs exhibited senescent-like characteristics, and senescence-associated secretory phenotypes were identified in the aging HF mesenchyme. These results clarify fibroblast dynamics within the HF and suggest that progressive dysfunction within the mesenchymal progenitor pool contributes to age-related hair loss.


Assuntos
Alopecia/etiologia , Diferenciação Celular , Senescência Celular , Derme/patologia , Folículo Piloso/patologia , Células-Tronco Mesenquimais/patologia , Fatores Etários , Alopecia/metabolismo , Alopecia/patologia , Animais , Proliferação de Células , Derme/metabolismo , Feminino , Folículo Piloso/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regeneração
14.
Cell Stem Cell ; 27(3): 396-412.e6, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32755548

RESUMO

Dermal fibroblasts exhibit considerable heterogeneity during homeostasis and in response to injury. Defining lineage origins of reparative fibroblasts and regulatory programs that drive fibrosis or, conversely, promote regeneration will be essential for improving healing outcomes. Using complementary fate-mapping approaches, we show that hair follicle mesenchymal progenitors make limited contributions to wound repair. In contrast, extrafollicular progenitors marked by the quiescence-associated factor Hic1 generated the bulk of reparative fibroblasts and exhibited functional divergence, mediating regeneration in the center of the wound neodermis and scar formation in the periphery. Single-cell RNA-seq revealed unique transcriptional, regulatory, and epithelial-mesenchymal crosstalk signatures that enabled mesenchymal competence for regeneration. Integration with scATAC-seq highlighted changes in chromatin accessibility within regeneration-associated loci. Finally, pharmacological modulation of RUNX1 and retinoic acid signaling or genetic deletion of Hic1 within wound-activated fibroblasts was sufficient to modulate healing outcomes, suggesting that reparative fibroblasts have latent but modifiable regenerative capacity.


Assuntos
Derme , Cicatrização , Cicatriz/patologia , Derme/patologia , Fibroblastos , Folículo Piloso , Humanos , Pele
15.
Stem Cell Reports ; 13(6): 1068-1082, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31735655

RESUMO

Following full-thickness skin injuries, epithelialization of the wound is essential. The standard of care to achieve this wound "closure" in patients is autologous split-thickness skin grafting (STSG). However, patients living with STSGs report significant chronic impairments leading to functional deficiencies such as itch, altered sensation, fragility, hypertrophic scarring, and contractures. These features are attributable to the absence of functional dermis combined with the formation of disorganized fibrotic extracellular matrix. Recent work has demonstrated the existence of dermal progenitor cells (DPCs) residing within hair follicles that function to continuously regenerate mesenchymal tissue. The present work examines whether cultured DPCs could regenerate dermis within an STSG and improve overall graft function. Adult human DPCs were transplanted into a full-thickness skin wound in immune-compromised mice and closed with a human STSG. At 3 months, human DPCs (hDPCs) had successfully integrated into the xenograft and differentiated into various regionally specified phenotypes, improving both viscoelastic properties of the graft and mitigating pruritus.


Assuntos
Derme/citologia , Transplante de Pele , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Biomarcadores , Separação Celular , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Expressão Gênica , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Fenótipo , Alicerces Teciduais
16.
Cell Rep ; 24(10): 2561-2572.e6, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184491

RESUMO

Pro-regenerative macrophages are well known for their role in promoting tissue repair; however, their specific roles in promoting regeneration of the injured nerve are not well defined. Specifically, how macrophages interact with Schwann cells following injury during remyelination has been largely unexplored. We demonstrate that after injury, including in humans, macrophages function to clear debris and persist within the nerve microenvironment. Macrophage ablation immediately preceding remyelination results in an increase in immature Schwann cell density, a reduction in remyelination, and long-term deficits in conduction velocity. Targeted RNA-seq of macrophages from injured nerve identified Gas6 as one of several candidate factors involved in regulating Schwann cell dynamics. Functional studies show that the absence of Gas6 within monocyte lineage cells impairs Schwann cell remyelination within the injured nerve. These results demonstrate a role for macrophages in regulating Schwann cell function during nerve regeneration and highlight a molecular mechanism by which this occurs.


Assuntos
Sobrevivência Celular/fisiologia , Macrófagos/metabolismo , Animais , Western Blotting , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular/genética , Citoplasma/metabolismo , Feminino , Células HeLa , Humanos , Camundongos , Regeneração Nervosa/fisiologia , Gravidez , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo
17.
J Invest Dermatol ; 138(10): 2111-2122, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29705291

RESUMO

Hair follicle stem cells are regulated by intrafollicular and extrafollicular niche signals. Appropriate hair follicle regeneration relies on the coordinated release and integration of these signals. How immune cells, particularly cutaneous macrophages, influence the hair follicle stem cell niche and regeneration is not well understood. We took advantage of wound-induced hair growth (WIHG) to explore the relationship between wound macrophages and hair follicle regeneration. First, we showed that WIHG is dependent on CD11b+F4/80+ macrophages at 7-11 days after injury. Next, using CX3CR1gfp/+:CCR2rfp/+ mice to capture the dynamic spectrum of macrophage phenotypes during wound healing, we showed that wound macrophages transition from a CX3CR1lo/med to a CX3CR1hi phenotype at the onset of WIHG. Finally, WIHG is abolished in mice deficient for CX3CR1, delayed with pharmacological inhibition of transforming growth factor-ß receptor type 1, and rescued with exogenous transforming growth factor-ß1. Overall, we propose a model in which transforming growth factor-ß1 and CX3CR1 are critical for recruiting and maintaining the CCR2+CX3CR1hiLy6CloTNFα+ macrophages critical for stimulating WIHG.


Assuntos
Folículo Piloso/metabolismo , Macrófagos/metabolismo , Receptores de Interleucina-8A/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização/fisiologia , Ferimentos e Lesões/metabolismo , Animais , Movimento Celular , Modelos Animais de Doenças , Citometria de Fluxo , Folículo Piloso/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ferimentos e Lesões/patologia
18.
Sci Rep ; 7(1): 10291, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860484

RESUMO

Cell-based therapies have recently been the focus of much research to enhance skin wound healing. An important challenge will be to develop vehicles for cell delivery that promote survival and uniform distribution of cells across the wound bed. These systems should be stiff enough to facilitate handling, whilst soft enough to limit damage to newly synthesized wound tissue and minimize patient discomfort. Herein, we developed several novel modifiable nanofibre scaffolds comprised of Poly (ε-caprolactone) (PCL) and gelatin (GE). We asked whether they could be used as a functional receptacle for adult human Skin-derived Precursor Cells (hSKPs) and how naked scaffolds impact endogenous skin wound healing. PCL and GE were electrospun in a single facile solvent to create composite scaffolds and displayed unique morphological and mechanical properties. After seeding with adult hSKPs, deposition of extracellular matrix proteins and sulphated glycosaminoglycans was found to be enhanced in composite grafts. Moreover, composite scaffolds exhibited significantly higher cell proliferation, greater cell spreading and integration within the nanofiber mats. Transplantation of acellular scaffolds into wounds revealed scaffolds exhibited improvement in dermal-epidermal thickness, axonal density and collagen deposition. These results demonstrate that PCL-based nanofiber scaffolds show promise as a cell delivery system for wound healing.


Assuntos
Materiais Biocompatíveis/química , Derme/citologia , Matriz Extracelular/metabolismo , Nanofibras/química , Células-Tronco/metabolismo , Cicatrização , Animais , Varredura Diferencial de Calorimetria , Caproatos/química , Sobrevivência Celular , Colágeno/química , Derme/irrigação sanguínea , Derme/inervação , Derme/metabolismo , Gelatina/química , Humanos , Imuno-Histoquímica , Lactonas/química , Camundongos , Nanofibras/ultraestrutura , Alicerces Teciduais/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-24721281

RESUMO

BACKGROUND: Myocardial fibrosis is a pathological process that is characterized by disrupted regulation of extracellular matrix proteins resulting in permanent scarring of the heart tissue and eventual diastolic heart failure. Pro-fibrotic molecules including transforming growth factor-ß and connective tissue growth factor are expressed early in the AngiotensinII (AngII)-induced and other models of myocardial fibrosis. As such, antibody-based therapies against these and other targets are currently under development. RESULTS: In the present study, C57Bl/6 mice were subcutaneously implanted with a mini-osmotic pump containing either AngII (2.0 µg/kg/min) or saline control for 3 days in combination with mIgG (1 mg/kg/d) injected through the tail vein. Fibrosis was assessed after picosirius red staining of myocardial cross-sections and was significantly increased after AngII exposure compared to saline control (11.37 ± 1.41%, 4.94 ± 1.15%; P <0.05). Non-specific mIgG treatment (1 mg/kg/d) significantly increased the amount of fibrosis (26.34 ± 3.03%; P <0.01). However, when AngII exposed animals were treated with a Fab fragment of the mIgG or mIgM, this exacerbation of fibrosis was no longer observed (14.49 ± 2.23%; not significantly different from AngII alone). CONCLUSIONS: These data suggest that myocardial fibrosis was increased by the addition of exogenous non-specific antibodies in an Fc-mediated manner. These findings could have substantial impact on the future experimental design of antibody-based therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA