Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 14: 506-514, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520312

RESUMO

An efficient three-step protocol was developed to produce 2-(azidomethyl)oxazoles from vinyl azides in a continuous-flow process. The general synthetic strategy involves a thermolysis of vinyl azides to generate azirines, which react with bromoacetyl bromide to provide 2-(bromomethyl)oxazoles. The latter compounds are versatile building blocks for nucleophilic displacement reactions as demonstrated by their subsequent treatment with NaN3 in aqueous medium to give azido oxazoles in good selectivity. Process integration enabled the synthesis of this useful moiety in short overall residence times (7 to 9 min) and in good overall yields.

2.
Inflammation ; 41(4): 1334-1348, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29656318

RESUMO

Although inflammation is a biological phenomenon that exists to protect the host against infections and/or related problems, its unceasing activation results in the aggravation of several medical conditions. Imidazoles, whether natural or synthetic, are molecules related to a broad spectrum of biological effects, including anti-inflammatory properties. In this study, we screened eight novel small molecules of the imidazole class synthesized by our research group for their in vitro anti-inflammatory activity. The effect of the selected molecules was confirmed in an in vivo inflammatory model. We also analyzed whether the effects were caused by inhibition of nuclear factor kappa B (NF-κB) transcription factor transmigration. Of the eight imidazoles tested, methyl 1-allyl-2-(4-fluorophenyl)-5-phenyl-1H-imidazole-4-acetate (8) inhibited nitric oxide metabolites and pro-inflammatory cytokine (TNF-α, IL-6, and IL-1ß) secretion in J774 macrophages stimulated with LPS. It also attenuated leukocyte migration and exudate formation in the pleural cavity of mice challenged with carrageenan. Furthermore, imidazole 8 reverted the oxidative stress pattern triggered by carrageenan in the pleural cavity by diminishing myeloperoxidase, superoxide dismutase, catalase, and glutathione S-transferase activities and reducing the production of nitric oxide metabolites and thiobarbituric acid-reactive substances. Finally, these effects can be attributed, at least in part, to the ability of this compound to prevent NF-κB transmigration. In this context, our results demonstrate that imidazole 8 has promising potential as a prototype for the development of a new anti-inflammatory drug to treat inflammatory conditions in which NF-κB and oxidative stress play a prominent role. Graphical Abstract ᅟ.


Assuntos
Anti-Inflamatórios/síntese química , Desenho de Fármacos , Imidazóis/farmacologia , Animais , Linhagem Celular , Imidazóis/síntese química , Imidazóis/química , Camundongos , NF-kappa B/antagonistas & inibidores , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA