Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Phys Chem Chem Phys ; 24(10): 6185-6192, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35229090

RESUMO

Until now, surface-deposited stilbenes have been much less studied than other photochromic systems. Here, an asymmetrically substituted styrene incorporating a redox-active ferrocene moiety and a terminal alkyne group has been synthesised to investigate its photoisomerization in solution, and upon the formation of chemisorbed self-assembled monolayers through a carbon-gold bond formation. Charge transport measurements across the monolayers reveal that upon chemical linkage to the gold substrate there is an alteration of the isomerization pathway, which favours the trans to cis conversion, which is not observed in solution. The experimental observations are interpreted based on quantum chemistry calculations.

2.
Angew Chem Int Ed Engl ; 58(41): 14467-14471, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31322792

RESUMO

A complete experimental and theoretical study has been carried out for aromatic and quinoidal perylene-based bridges substituted with bis(diarylamine) and bis(arylimine) groups respectively. The through-bridge inter-redox site electronic couplings (VAB ) have been calculated for their respective mixed-valence radical cation and radical anion species. The unusual similitudes of the resulting VAB values for the given structures reveal the intervention of molecular shapes with balanced semi-quinoidal/semi-aromatic structures in the charge delocalization. An identical molecular object equally responding to the injection of either positive or negative charges is rare in the field of organic π-conjugated molecules. However, once probed herein for perylene-based systems, it can be extrapolated to other π-conjugated bridges. As a result, this work opens the door to the rational design of true ambipolar bulk and molecular conductors.

3.
J Am Chem Soc ; 140(5): 1691-1696, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29307191

RESUMO

Organic paramagnetic and electroactive molecules are attracting interest as core components of molecular electronic and spintronic devices. Currently, further progress is hindered by the modest stability and reproducibility of the molecule/electrode contact. We report the synthesis of a persistent organic radical bearing one and two terminal alkyne groups to form Au-C σ bonds. The formation and stability of self-assembled monolayers and the electron transport through single-molecule junctions at room temperature have been studied. The combined analysis of both systems demonstrates that this linker forms a robust covalent bond with gold and a better-defined contact when compared to traditional sulfur-based linkers. Density functional theory and quantum transport calculations support the experimental observation highlighting a reduced variability of conductance values for the C-Au based junction. Our findings advance the quest for robustness and reproducibility of devices based on electroactive molecules.

4.
Small ; 14(10)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280286

RESUMO

A switchable electrode, which relies on an indium-tin oxide conductive substrate coated with a self-assembled monolayer terminated with an anthraquinone group (AQ), is reported as an electrowetting system. AQ electrochemical features confer the capability of yielding a significant modulation of surface wettability as high as 26° when its redox state is switched. Hence, an array of planar electrodes for droplets actuation is fabricated and integrated in a microfluidic device to perform mixing and dispensing on sub-nanoliter scale. Vehiculation of cells across microfluidic compartments is made possible by taking full advantage of surface electrowetting in culture medium.

5.
Chemistry ; 24(21): 5500-5505, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29470855

RESUMO

Single-component conductors based on neutral organic radicals have received a lot of attention due to the possibility that the unpaired electron can serve as a charge carrier without the need of a previous doping process. Although most of these systems are based on delocalized planar radicals, we present here a nonplanar and spin localized radical based on a tetrathiafulvalene (TTF) moiety, linked to a perchlorotriphenylmethyl (PTM) radical by a conjugated bridge, which exhibits a semiconducting behavior upon application of high pressure. The synthesis, electronic properties, and crystal structure of this neutral radical TTF-Ph-PTM derivative (1) are reported and implications of its crystalline structure on its electrical properties are discussed. On the other hand, the non-radical derivative (2), which is isostructural with the radical 1, shows an insulating behavior at all measured pressures. The different electronic structures of these two isostructural systems have a direct influence on the conducting properties, as demonstrated by band structure DFT calculations.

6.
Chemistry ; 24(15): 3776-3783, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29239499

RESUMO

A detailed analysis is undertaken of positively charged species generated on a series of thienylenevinylene (nTV) wires terminally substituted with two perchlorotriphenylmethyl (. PTM) radical acceptor groups, . PTM-nTV-PTM. (n=2-7). Motivated by the counterintuitive key role played by holes in the nTV bridges on the operating mechanism of electron transfer in their radical anion mixed-valence derivatives, a wide combination of experimental and theoretical techniques is used, with the aim of gaining further insights into their structural location. Consequently, contributions of the . PTM units for the stabilization of the radical cations and hole localization, particularly in the case of the shortest molecular wire, are probed. In this sense, the formation of quinoidal ring segments, resulting from the coupling of the unpaired electron of the . PTM radical site with those generated along the nTV chains is found. Additionally, open-shell dications, described by the recovery of the central aromaticity and two terminal quinoidal segments, assisted by the . PTM units, are detected.

7.
Chemphyschem ; 19(19): 2572-2578, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-29877600

RESUMO

Perchlorotriphenylmethyl (PTM) radical-based compounds are widely exploited as molecular switching units. However, their application in optoelectronics is limited by the fact that they exhibit intense absorption bands only in a narrow range of the UV region around 385 nm. Recent experimental works have reported new PTM based compounds which present a broad absorption in the visible region although the origin of this behavior is not fully explained. In this context, Time-Dependent Density Functional Theory (TD-DFT) calculations have been performed to rationalize the optical properties of these compounds. Moreover, a new compound based on PTM disubstituted with bistriazene units has been synthetized and characterized to complete the set of available experimental data on related compounds. The results point to the delocalization of the Highest Occupied Molecular Orbital (HOMO) of the substituents along the PTM core as the origin of the new high absorption bands in the visible region. As a consequence, the absorption of the PTM-based compounds can be tuned via the choice of the nature of the donor substituent, type of connection, and number of substituents.

8.
J Am Chem Soc ; 139(2): 686-692, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27997166

RESUMO

Charge transfer/transport in molecular wires over varying distances is a subject of great interest. The feasible transport mechanisms have been generally accounted for on the basis of tunneling or superexchange charge transfer operating over small distances which progressively gives way to hopping transport over larger distances. The underlying molecular sequential steps that likely take place during hopping and the operative mechanism occurring at intermediate distances have received much less attention given the difficulty in assessing detailed molecular-level information. We describe here the operating mechanisms for unimolecular electron transfer/transport in the ground state of radical-anion mixed-valence derivatives occurring between their terminal perchlorotriphenylmethyl/ide groups through thiophene-vinylene oligomers that act as conjugated wires of increasing length up to 53 Å. The unique finding here is that the net transport of the electron in the larger molecular wires is initiated by an electron-hole dissociation intermediated by hole delocalization (conformationally assisted and thermally dependent) forming transient mobile polaronic states in the bridge that terminate by an electron-hole recombination at the other wire extreme. On the contrary, for the shorter radical-anions our results suggest that a flickering resonance mechanism which is intermediate between hopping and superexchange is the operative one. We support these mechanistic interpretations by applying the pertinent biased kinetic models of the charge/spin exchange rates determined by electron paramagnetic resonance and by molecular structural level information obtained from UV-vis and Raman spectroscopies and by quantum chemical modeling.

9.
Phys Rev Lett ; 118(11): 117001, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28368652

RESUMO

Superconductors containing magnetic impurities exhibit intriguing phenomena derived from the competition between Cooper pairing and Kondo screening. At the heart of this competition are the Yu-Shiba-Rusinov (Shiba) states which arise from the pair breaking effects a magnetic impurity has on a superconducting host. Hybrid superconductor-molecular junctions offer unique access to these states but the added complexity in fabricating such devices has kept their exploration to a minimum. Here, we report on the successful integration of a model spin 1/2 impurity, in the form of a neutral and stable all organic radical molecule, in proximity-induced superconducting break junctions. Our measurements reveal excitations which are characteristic of a spin-induced Shiba state due to the radical's unpaired spin strongly coupled to a superconductor. By virtue of a variable molecule-electrode coupling, we access both the singlet and doublet ground states of the hybrid system which give rise to the doublet and singlet Shiba excited states, respectively. Our results show that Shiba states are a robust feature of the interaction between a paramagnetic impurity and a proximity-induced superconductor where the excited state is mediated by correlated electron-hole (Andreev) pairs instead of Cooper pairs.

10.
Chemistry ; 23(6): 1415-1421, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-27859821

RESUMO

A novel, persistent, electrochemically active perchlorinated triphenylmethyl (PTM) radical with a diazonium functionality has been covalently attached to highly ordered pyrolytic graphite (HOPG) by electrografting in a single-step process. Electrochemical scanning tunneling microscopy (EC-STM) and Raman spectroscopy measurements revealed that PTM molecules had a higher tendency to covalently react at the HOPG step edges. The cross-section profiles from EC-STM images showed that there was current enhancement at the functionalized areas, which could be explained by redox-mediated electron tunneling through surface-confined redox-active molecules. Cyclic voltammetry clearly demonstrated that the intrinsic properties of the organic radical were preserved upon grafting and DFT calculations also revealed that the magnetic character of the PTM radical was preserved.

11.
Angew Chem Int Ed Engl ; 56(11): 2898-2902, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28140501

RESUMO

Carbon-bridged bis(aminoaryl) oligo(para-phenylenevinylene)s have been prepared and their optical, electrochemical, and structural properties analyzed. Their radical cations are class III and class II mixed-valence systems, depending on the molecular size, and they show electronic couplings which are among the largest for the self-exchange reaction of purely organic molecules. In their dication states, the antiferromagnetic coupling is progressively tuned with size from quinoidal closed-shell to open-shell biradicals. The data prove that the electronic coupling in the radical cations and the singlet-triplet gap in the dications show similar small attenuation factors, thus allowing charge/spin transfer over rather large distances.

12.
J Am Chem Soc ; 138(36): 11517-25, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27281384

RESUMO

There is a growing interest in the development of single-component molecular conductors based on neutral organic radicals that are mainly formed by delocalized planar radicals, such as phenalenyl or thiazolyl radicals. However, there are no examples of systems based on nonplanar and spin-localized C-centered radicals exhibiting electrical conductivity due to their large Coulomb energy (U) repulsion and narrow electronic bandwidth (W) that give rise to a Mott insulator behavior. Here we present a new type of nonplanar neutral radical conductor attained by linking a tetrathiafulvalene (TTF) donor unit to a neutral polychlorotriphenylmethyl radical (PTM) with the important feature that the TTF unit enhances the overlap between the radical molecules as a consequence of short intermolecular S···S interactions. This system becomes semiconducting upon the application of high pressure thanks to increased electronic bandwidth and charge reorganization opening the way to develop a new family of neutral radical conductors.

13.
Chemphyschem ; 17(12): 1810-4, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27017152

RESUMO

Mixed molecular self-assembled monolayers (SAMs) on gold, based on two types of electroactive molecules, that is, electron-donor (ferrocene) and electron-acceptor (anthraquinone) molecules, are prepared as an approach to realise surfaces exhibiting multiple accessible redox states. The SAMs are investigated in different electrolyte media. The nature of these media has a strong impact on the types of redox processes that take place and on the redox potentials. Under optimised conditions, surfaces with three redox states are achieved. Such states are accessible in a relatively narrow potential window in which the SAMs on gold are stable. This communication elucidates the key challenges in fabricating bicomponent SAMs as electrochemical switches.

14.
Phys Chem Chem Phys ; 18(40): 27733-27737, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27722361

RESUMO

A redox-active persistent perchlorotriphenylmethyl (PTM) radical chemically linked to gold exhibits stable electrochemical activity in ionic liquids. Electrochemical tunnelling spectroscopy in this medium demonstrates that the PTM radical shows a highly effective redox-mediated current enhancement, demonstrating its applicability as an active nanometer-scale electronic component.

15.
J Phys Chem A ; 120(51): 10297-10303, 2016 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-27966932

RESUMO

The understanding of the crystal structure of organic compounds, and its relationship to their physical properties, have become essential to design new advanced molecular materials. In this context, we present a computational study devoted to rationalize the different crystal packing displayed by two closely related organic systems based on the TTF-PTM dyad (TTF = tetrathiafulvalene, PTM = polychlorotriphenylmethane) with almost the same molecular structure but a different electronic one. The radical species (1), with an enhanced electronic donor-acceptor character, exhibits a herringbone packing, whereas the nonradical protonated analogue (2) is organized forming dimers. The stability of the possible polymorphs is analyzed in terms of the cohesion energy of the unit cell, intermolecular interactions between pairs, and molecular flexibility of the dyad molecules. It is observed that the higher electron delocalization in radical compound 1 has a direct influence on the geometry of the molecule, which seems to dictate its preferential crystal structure.

16.
CrystEngComm ; 18(33): 6149-6152, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27774040

RESUMO

The electronic and structural properties of two tetrathiafulvalene derivatives bearing aromatic benzene rings are reported. Thin film transistors of these materials show p-type characteristics with comparable mobility values. It is found that the rigidification of the molecule is beneficial for reducing the reorganisation energy but also has an unfavorable impact on the electronic structure dimensionality.

17.
Nano Lett ; 15(5): 3109-14, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25897770

RESUMO

Organic radicals are neutral, purely organic molecules exhibiting an intrinsic magnetic moment due to the presence of an unpaired electron in the molecule in its ground state. This property, added to the low spin-orbit coupling and weak hyperfine interactions, make neutral organic radicals good candidates for molecular spintronics insofar as the radical character is stable in solid state electronic devices. Here we show that the paramagnetism of the polychlorotriphenylmethyl radical molecule in the form of a Kondo anomaly is preserved in two- and three-terminal solid-state devices, regardless of mechanical and electrostatic changes. Indeed, our results demonstrate that the Kondo anomaly is robust under electrodes displacement and changes of the electrostatic environment, pointing to a localized orbital in the radical as the source of magnetism. Strong support to this picture is provided by density functional calculations and measurements of the corresponding nonradical species. These results pave the way toward the use of all-organic neutral radical molecules in spintronics devices and open the door to further investigations into Kondo physics.

18.
Chemistry ; 21(14): 5504-9, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25694181

RESUMO

Two new pyrene-polychlorotriphenylmethyl (PTM) dyads and triads have been synthesized and characterized by optical, magnetic, and electrochemical methods. The interplay between the different electronic states of the PTM moiety in the dyads and triads and the optical and magnetic properties of the molecules have been studied. The electronic spectra of the radicals 5(.) and 6(.) show the intramolecular charge-transfer transition at around 700 nm due to the acceptor character of the PTM radical. In the diamagnetic protonated derivatives 3 and 4 the fluorescence due to the pyrene is maintained, whereas in the radicals 5(.) and 6(.) and the corresponding anions 5(-) and 6(-) there is a clear quenching of the fluorescence, which is more efficient in the case of radicals. The redox activity of PTM radicals that are easily reduced to the corresponding carbanion has been exploited to fabricate electrochemical switches with optical and magnetic response.


Assuntos
Pirenos/química , Técnicas Eletroquímicas , Elétrons , Fluorescência , Halogenação , Magnetismo , Metilação , Oxirredução
19.
Chemistry ; 21(24): 8816-25, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-25933417

RESUMO

An electron donor-acceptor dyad based on a polychlorotriphenylmethyl (PTM) radical subunit linked to a tetrathiafulvalene (TTF) unit through a π-conjugated N-phenyl-pyrrole-vinylene bridge has been synthesized and characterized. The intramolecular electron transfer process and magnetic properties of the radical dyad have been evaluated by cyclic voltammetry, UV/Vis spectroscopy, vibrational spectroscopy, and ESR spectroscopy in solution and in the solid state. The self-assembling abilities of the radical dyad and of its protonated non-radical analogue have been investigated by X-ray crystallographic analysis, which revealed that the radical dyad produced a supramolecular architecture with segregated donor and acceptor units in which the TTF subunits were arranged in 1D herringbone-type stacks. Analysis of the X-ray data at different temperatures suggests that the two inequivalent molecules that form the asymmetric unit of the crystal of the radical dyad evolve into an opposite degree of electronic delocalization as the temperature decreases.


Assuntos
Compostos Heterocíclicos/química , Transporte de Elétrons , Estrutura Molecular
20.
Inorg Chem ; 54(14): 7000-6, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26158196

RESUMO

(α-DT-TTF)2[Au(i-mnt)2] and (α-DT-TTF)2[Co(mnt)2] are two new salts of the donor α-dithiophene-tetrathiafulvalene with stable diamagnetic anions, both presenting a ladder structure of the donors organized in paired segregated stacks. The first one is isostructural with previously reported closely related compounds and presents a magnetic spin-ladder behavior with J∥= 83.5 K and J⊥ = 110.3 K as estimated from spin susceptibility data in single crystals. (α-DT-TTF)2[Co(mnt)2] presents a new structural type with a different arrangement of pairs of donor stacks, alternating with stacks of dimerized [Co(mnt)2] anions which are however arranged in an uncorrelated fashion perpendicular to the stacking axis. Due to the strong coupling between the disordered anion chains and the donor chains, this compound does not present a magnetic spin-ladder behavior. The low temperature superstructure of (DT-TTF)2[Cu(mnt)2] below the transition at 235 K, previously known to be associated with a lattice doubling along the stacking axis, was solved by synchrotron radiation diffraction in small single crystals. It is found that this dimerization is due to donor charge localization with the spin carriers being associated with fully oxidized donor species alternating with neutral donors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA