Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169390, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135084

RESUMO

In this study supramolecular solvents (SUPRAS) are employed for the first time to perform a wide screening of organic compounds in indoor dust samples. The potential of SUPRAS to efficiently extract a wide polarity range of compounds, and to simplify and improve the green properties of sample treatment in this area are discussed. SUPRAS made up of inverse aggregates of hexanol in tetrahydrofuran:water mixtures, which have been previously and successfully applied to the target determination of a variety of organic contaminants in different environmental matrices, were employed. Analysis was done with liquid chromatography and high resolution mass spectrometry. Twelve samples from public buildings (six educative buildings, two food stores, two nightclubs, one office and a coffee shop) were collected in South Spain. A total of 146 compounds were detected by target (∼33 %), suspect (∼55 %) and non-target screening (∼12 %). Around 86 % of all the compounds were identified (or tentatively identified) with levels of confidence equal or higher than 3. Novel designer drugs of abuse, unreported organophosphorus compounds and well-known organic contaminants, such as bisphenols, parabens, phthalates and flame retardants are reported. Differences with previous studies on wide screening of indoor dust reveal the influence of the employed databases for data processing and of the extraction method together with the different contamination profiles given by the sample location.

2.
Anal Chim Acta ; 1309: 342688, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772668

RESUMO

BACKGROUND: Chlorophenols are routinely determined in aquatic systems to check compliance with the restrictive international legislations set for protection of human and aquatic life. Their control requires affordable analytical methods, particularly in labs at low- and medium-income countries. Liquid chromatography-UV detection is a convenient technique for this purpose, but the availability of suitable sample processing remains pending. Organic solvents are inefficient for extracting the whole range of chlorophenols whereas solid-phase extractions are expensive and labour-intensive. So, an efficient, fast and cheap extraction of chlorophenols, amenable to any lab, would help to cope with their worldwide analytical control in natural waters. RESULTS: A supramolecular solvent (SUPRAS) was tailored for providing mixed interaction mechanisms aimed at the efficient extraction of chlorophenols prior to LC-UV. The SUPRAS was synthesized from the self-assembly of hexylphosphonic acid under acidic conditions and consisted of sponge-like nanostructures made up of amphiphile and water. The phosphoryl (PO) group was selected as the major driver of the extraction because of its ability to act as halogen and hydrogen bond acceptor for chlorophenols. Additional interactions were hydrogen bonds from O-H amphiphilic groups and the surrounding water, and dispersion and CH-π interactions in the hydrocarbon chains. The number of binding sites in the SUPRAS could be modulated by addition of salt. The SUPRAS formed in situ in the sample, the extraction took 5 min, the concentration factor was around 220, quantification limits (0.1-0.3 µg L-1) were below the EU standards, and the method worked for natural waters. SIGNIFICANCE: A fast, low-cost, and organic solvent-free sample processing only requiring conventional lab equipment (stirrers and centrifuges) provided SUPRAS extracts that could be directly analyzed by LC-UV. SUPRAS synthesis occurred spontaneously in the water sample under addition of hexylphosphonic acid and the whole process required low skills. The method meets the analytical and operational performances for the analytical control of chlorophenols in natural waters and it is within the reach of any lab.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA