Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Plant Physiol ; 191(1): 252-264, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250901

RESUMO

The cause of reduced leaf-level transpiration under elevated CO2 remains largely elusive. Here, we assessed stomatal, hydraulic, and morphological adjustments in a long-term experiment on Aleppo pine (Pinus halepensis) seedlings germinated and grown for 22-40 months under elevated (eCO2; c. 860 ppm) or ambient (aCO2; c. 410 ppm) CO2. We assessed if eCO2-triggered reductions in canopy conductance (gc) alter the response to soil or atmospheric drought and are reversible or lasting due to anatomical adjustments by exposing eCO2 seedlings to decreasing [CO2]. To quantify underlying mechanisms, we analyzed leaf abscisic acid (ABA) level, stomatal and leaf morphology, xylem structure, hydraulic efficiency, and hydraulic safety. Effects of eCO2 manifested in a strong reduction in leaf-level gc (-55%) not caused by ABA and not reversible under low CO2 (c. 200 ppm). Stomatal development and size were unchanged, while stomatal density increased (+18%). An increased vein-to-epidermis distance (+65%) suggested a larger leaf resistance to water flow. This was supported by anatomical adjustments of branch xylem having smaller conduits (-8%) and lower conduit lumen fraction (-11%), which resulted in a lower specific conductivity (-19%) and leaf-specific conductivity (-34%). These adaptations to CO2 did not change stomatal sensitivity to soil or atmospheric drought, consistent with similar xylem safety thresholds. In summary, we found reductions of gc under elevated CO2 to be reflected in anatomical adjustments and decreases in hydraulic conductivity. As these water savings were largely annulled by increases in leaf biomass, we do not expect alleviation of drought stress in a high CO2 atmosphere.


Assuntos
Dióxido de Carbono , Árvores , Árvores/fisiologia , Dióxido de Carbono/metabolismo , Folhas de Planta/fisiologia , Água/metabolismo , Solo
2.
J Exp Bot ; 75(13): 3758-3761, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982745

RESUMO

This insight article comments on: Ziegler C, Cochard, H, Stahl C, Bastien Gérard LF, Goret J, Heuret P, Levionnois S, Maillard P, Bonal D, Coste S. 2024. Residual water losses mediate the trade-off between growth and drought survival across saplings of 12 tropical rainforest tree species with contrasting hydraulic strategies. Journal of Experimental Botany 75, 4128-4147.


Assuntos
Secas , Árvores , Árvores/fisiologia , Árvores/crescimento & desenvolvimento , Floresta Úmida , Água/metabolismo , Água/fisiologia , Estresse Fisiológico
3.
Proc Natl Acad Sci U S A ; 117(40): 24885-24892, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958662

RESUMO

Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates. Understanding such mechanisms is required to predict forests' resilience to a changing climate. We investigated the impact of drought and drought release on C allocation in a 100-y-old Scots pine forest. We applied 13CO2 pulse labeling to naturally dry control and long-term irrigated trees and tracked the fate of the label in above- and belowground C pools and fluxes. Allocation of new assimilates belowground was ca. 53% lower under nonirrigated conditions. A short rainfall event, which led to a temporary increase in the soil water content (SWC) in the topsoil, strongly increased the amounts of C transported belowground in the nonirrigated plots to values comparable to those in the irrigated plots. This switch in allocation patterns was congruent with a tipping point at around 15% SWC in the response of the respiratory activity of soil microbes. These results indicate that the metabolic sink activity in the rhizosphere and its modulation by soil moisture can drive C allocation within adult trees and ecosystems. Even a subtle increase in soil moisture can lead to a rapid recovery of belowground functions that in turn affects the direction of C transport in trees.


Assuntos
Carbono/metabolismo , Pinus sylvestris/metabolismo , Solo/química , Árvores/metabolismo , Carbono/análise , Mudança Climática , Secas , Ecossistema , Florestas , Pinus sylvestris/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Árvores/crescimento & desenvolvimento , Água/análise , Água/metabolismo
4.
New Phytol ; 235(3): 965-977, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35403713

RESUMO

Carbon (C) exuded via roots is proposed to increase under drought and facilitate important ecosystem functions. However, it is unknown how exudate quantities relate to the total C budget of a drought-stressed tree, that is, how much of net-C assimilation is allocated to exudation at the tree level. We calculated the proportion of daily C assimilation allocated to root exudation during early summer by collecting root exudates from mature Fagus sylvatica and Picea abies exposed to experimental drought, and combining above- and belowground C fluxes with leaf, stem and fine-root surface area. Exudation from individual roots increased exponentially with decreasing soil moisture, with the highest increase at the wilting point. Despite c. 50% reduced C assimilation under drought, exudation from fine-root systems was maintained and trees exuded 1.0% (F. sylvatica) to 2.5% (P. abies) of net C into the rhizosphere, increasing the proportion of C allocation to exudates two- to three-fold. Water-limited P. abies released two-thirds of its exudate C into the surface soil, whereas in droughted F. sylvatica it was only one-third. Across the entire root system, droughted trees maintained exudation similar to controls, suggesting drought-imposed belowground C investment, which could be beneficial for ecosystem resilience.


Assuntos
Abies , Fagus , Picea , Carbono , Secas , Ecossistema , Exsudatos e Transudatos , Raízes de Plantas , Solo , Árvores
5.
New Phytol ; 233(2): 687-704, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34668198

RESUMO

Heatwaves combined with drought affect tree functioning with as yet undetermined legacy effects on carbon (C) and nitrogen (N) allocation. We continuously monitored shoot and root gas exchange, δ13 CO2 of respiration and stem growth in well-watered and drought-treated Pinus sylvestris (Scots pine) seedlings exposed to increasing daytime temperatures (max. 42°C) and evaporative demand. Following stress release, we used 13 CO2 canopy pulse-labeling, supplemented by soil-applied 15 N, to determine allocation to plant compartments, respiration and soil microbial biomass (SMB) over 2.5 wk. Previously heat-treated seedlings rapidly translocated 13 C along the long-distance transport path, to root respiration (Rroot ; 7.1 h) and SMB (3 d). Furthermore, 13 C accumulated in branch cellulose, suggesting secondary growth enhancement. However, in recovering drought-heat seedlings, the mean residence time of 13 C in needles increased, whereas C translocation to Rroot was delayed (13.8 h) and 13 C incorporated into starch rather than cellulose. Concurrently, we observed stress-induced low N uptake and aboveground allocation. C and N allocation during early recovery were affected by stress type and impact. Although C uptake increased quickly in both treatments, drought-heat in combination reduced the above-belowground coupling and starch accumulated in leaves at the expense of growth. Accordingly, C allocation during recovery depends on phloem translocation capacity.


Assuntos
Secas , Pinus sylvestris , Carbono , Temperatura Alta , Folhas de Planta , Solo , Árvores
6.
Glob Chang Biol ; 28(6): 2095-2110, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927319

RESUMO

Under ongoing global climate change, drought periods are predicted to increase in frequency and intensity in the future. Under these circumstances, it is crucial for tree's survival to recover their restricted functionalities quickly after drought release. To elucidate the recovery of carbon (C) transport rates in c. 70-year-old Norway spruce (Picea abies [L.] KARST.) after 5 years of recurrent summer droughts, we conducted a continuous whole-tree 13 C labeling experiment in parallel with watering. We determined the arrival time of current photoassimilates in major C sinks by tracing the 13 C label in stem and soil CO2 efflux, and tips of living fine roots. In the first week after watering, aboveground C transport rates (CTR) from crown to trunk base were still 50% lower in previously drought-stressed trees (0.16 ± 0.01 m h-1 ) compared to controls (0.30 ± 0.06 m h-1 ). Conversely, CTR below ground, that is, from the trunk base to soil CO2 efflux were already similar between treatments (c. 0.03 m h-1 ). Two weeks after watering, aboveground C transport of previously drought-stressed trees recovered to the level of the controls. Furthermore, regrowth of water-absorbing fine roots upon watering was supported by faster incorporation of 13 C label in previously drought-stressed (within 12 ± 10 h upon arrival at trunk base) compared to control trees (73 ± 10 h). Thus, the whole-tree C transport system from the crown to soil CO2 efflux fully recovered within 2 weeks after drought release, and hence showed high resilience to recurrent summer droughts in mature Norway spruce forests. This high resilience of the C transport system is an important prerequisite for the recovery of other tree functionalities and productivity.


Assuntos
Picea , Carbono/metabolismo , Secas , Noruega , Árvores/metabolismo
7.
Glob Chang Biol ; 28(23): 6889-6905, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36039835

RESUMO

After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew ) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13 C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew to growth and CO2 efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2 efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew , stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity.


Assuntos
Picea , Secas , Carbono , Dióxido de Carbono , Árvores , Água
8.
Glob Chang Biol ; 27(12): 2970-2990, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33694242

RESUMO

Rising atmospheric [CO2 ] (Ca ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to Ca . Here, we sought to evaluate how increased vapor pressure deficit and reduced precipitation are likely to modify the impact of elevated Ca (eCa ) on tree productivity in an Australian Eucalyptus saligna Sm. plantation with access to deep soil water. We parameterized a forest growth simulation model (GOTILWA+) using data from two field experiments on E. saligna: a 2-year whole-tree chamber experiment with factorial Ca (ambient =380, elevated =620 µmol mol-1 ) and watering treatments, and a 10-year stand-scale irrigation experiment. Model evaluation showed that GOTILWA+ can capture the responses of canopy C uptake to (1) rising vapor pressure deficit (D) under both Ca treatments; (2) alterations in tree water uptake from shallow and deep soil layers during soil dry-down; and (3) the impact of irrigation on tree growth. Simulations suggest that increasing Ca up to 700 µmol mol-1 alone would result in a 33% increase in annual gross primary production (GPP) and a 62% increase in biomass over 10 years. However, a combined 48% increase in D and a 20% reduction in precipitation would halve these values. Our simulations identify high D conditions as a key limiting factor for GPP. They also suggest that rising Ca will compensate for increasing aridity limitations in E. saligna trees with access to deep soil water under non-nutrient limiting conditions, thereby reducing the negative impacts of global warming upon this eucalypt species. Simulation models not accounting for water sources available to deep-rooting trees are likely to overestimate aridity impacts on forest productivity and C stocks.


Assuntos
Solo , Água , Austrália , Dióxido de Carbono , Fertilização , Folhas de Planta , Árvores
9.
Ecol Appl ; 31(4): e02312, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33630380

RESUMO

Climate change will impact forest productivity worldwide. Forecasting the magnitude of such impact, with multiple environmental stressors changing simultaneously, is only possible with the help of process-based models. In order to assess their performance, such models require careful evaluation against measurements. However, direct comparison of model outputs against observational data is often not reliable, as models may provide the right answers due to the wrong reasons. This would severely hinder forecasting abilities under unprecedented climate conditions. Here, we present a methodology for model assessment, which supplements the traditional output-to-observation model validation. It evaluates model performance through its ability to reproduce observed seasonal changes of the most limiting environmental driver (MLED) for a given process, here daily gross primary productivity (GPP). We analyzed seasonal changes of the MLED for GPP in two contrasting pine forests, the Mediterranean Pinus halepensis Mill. Yatir (Israel) and the boreal Pinus sylvestris L. Hyytiälä (Finland) from three years of eddy-covariance flux data. Then, we simulated the same period with a state-of-the-art process-based simulation model (LandscapeDNDC). Finally, we assessed if the model was able to reproduce both GPP observations and MLED seasonality. We found that the model reproduced the seasonality of GPP in both stands, but it was slightly overestimated without site-specific fine-tuning. Interestingly, although LandscapeDNDC properly captured the main MLED in Hyytiälä (temperature) and in Yatir (soil water availability), it failed to reproduce high-temperature and high-vapor pressure limitations of GPP in Yatir during spring and summer. We deduced that the most likely reason for this divergence is an incomplete description of stomatal behavior. In summary, this study validates the MLED approach as a model evaluation tool, and opens up new possibilities for model improvement.


Assuntos
Ecossistema , Pinus , Finlândia , Florestas , Israel
10.
Oecologia ; 197(4): 939-956, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33835242

RESUMO

Biogenic volatile organic compounds (BVOC) play important roles in plant stress responses and can serve as stress indicators. While the impacts of gradual environmental changes on BVOCs have been studied extensively, insights in emission responses to repeated stress and recovery are widely absent. Therefore, we studied the dynamics of shoot gas exchange and BVOC emissions in Pinus halepensis seedlings during an induced moderate drought, two four-day-long heatwaves, and the combination of drought and heatwaves. We found clear stress-specific responses of BVOC emissions. Reductions in acetone emissions with declining soil water content and transpiration stood out as a clear drought indicator. All other measured BVOC emissions responded exponentially to rising temperatures during heat stress (maximum of 43 °C), but monoterpenes and methyl salicylate showed a reduced temperature sensitivity during the second heatwave. We found that these decreases in monoterpene emissions between heatwaves were not reflected by similar declines in their internal storage pools. Because stress intensity was extremely severe, most of the seedlings in the heat-drought treatment died at the end of the second heatwave (dark respiration ceased). Interestingly, BVOC emissions (methanol, monoterpenes, methyl salicylate, and acetaldehyde) differed between dying and surviving seedlings, already well before indications of a reduced vitality became visible in gas exchange dynamics. In summary, we could clearly show that the dynamics of BVOC emissions are sensitive to stress type, stress frequency, and stress severity. Moreover, we found indications that stress-induced seedling mortality was preceded by altered methanol, monoterpene, and acetaldehyde emission dynamics.


Assuntos
Pinus , Compostos Orgânicos Voláteis , Secas , Plântula , Solo
11.
New Phytol ; 226(6): 1607-1621, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32017113

RESUMO

Trees are increasingly exposed to hot droughts due to CO2 -induced climate change. However, the direct role of [CO2 ] in altering tree physiological responses to drought and heat stress remains ambiguous. Pinus halepensis (Aleppo pine) trees were grown from seed under ambient (421 ppm) or elevated (867 ppm) [CO2 ]. The 1.5-yr-old trees, either well watered or drought treated for 1 month, were transferred to separate gas-exchange chambers and the temperature gradually increased from 25°C to 40°C over a 10 d period. Continuous whole-tree shoot and root gas-exchange measurements were supplemented by primary metabolite analysis. Elevated [CO2 ] reduced tree water loss, reflected in lower stomatal conductance, resulting in a higher water-use efficiency throughout amplifying heat stress. Net carbon uptake declined strongly, driven by increases in respiration peaking earlier in the well-watered (31-32°C) than drought (33-34°C) treatments unaffected by growth [CO2 ]. Further, drought altered the primary metabolome, whereas the metabolic response to [CO2 ] was subtle and mainly reflected in enhanced root protein stability. The impact of elevated [CO2 ] on tree stress responses was modest and largely vanished with progressing heat and drought. We therefore conclude that increases in atmospheric [CO2 ] cannot counterbalance the impacts of hot drought extremes in Aleppo pine.


Assuntos
Secas , Árvores , Carbono , Dióxido de Carbono , Fotossíntese , Água
12.
Glob Chang Biol ; 25(10): 3395-3405, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31070834

RESUMO

Forest leaf area has enormous leverage on the carbon cycle because it mediates both forest productivity and resilience to climate extremes. Despite widespread evidence that trees are capable of adjusting to changes in environment across both space and time through modifying carbon allocation to leaves, many vegetation models use fixed carbon allocation schemes independent of environment, which introduces large uncertainties into predictions of future forest responses to atmospheric CO2 fertilization and anthropogenic climate change. Here, we develop an optimization-based model, whereby tree carbon allocation to leaves is an emergent property of environment and plant hydraulic traits. Using a combination of meta-analysis, observational datasets, and model predictions, we find strong evidence that optimal hydraulic-carbon coupling explains observed patterns in leaf allocation across large environmental and CO2 concentration gradients. Furthermore, testing the sensitivity of leaf allocation strategy to a diversity in hydraulic and economic spectrum physiological traits, we show that plant hydraulic traits in particular have an enormous impact on the global change response of forest leaf area. Our results provide a rigorous theoretical underpinning for improving carbon cycle predictions through advancing model predictions of leaf area, and underscore that tree-level carbon allocation to leaves should be derived from first principles using mechanistic plant hydraulic processes in the next generation of vegetation models.


Assuntos
Carbono , Árvores , Ciclo do Carbono , Florestas , Folhas de Planta
13.
New Phytol ; 218(1): 15-28, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29488280

RESUMO

Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die-off events have severe consequences for ecosystem services, biophysical and biogeochemical land-atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die-off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought-induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.


Assuntos
Secas , Florestas , Árvores/fisiologia , Previsões , Geografia , Modelos Teóricos , Probabilidade
14.
New Phytol ; 197(4): 1173-1184, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23316716

RESUMO

Stem CO(2) concentrations (stem [CO(2)]) undergo large temporal variations that need to be understood to better link tree physiological processes to biosphere-atmosphere CO(2) exchange. During 19 months, stem [CO(2)] was continuously measured in mature subalpine Norway spruce trees (Picea abies) and jointly analysed with stem, soil and air temperatures, sap flow rates, stem radius changes and CO(2) efflux rates from stem and soil on different time scales. Stem [CO(2)] exhibited a strong seasonality, of which over 80% could be explained with stem and soil temperatures. Both physical equilibrium processes of CO(2) between water and air according to Henry's law as well as physiological effects, including sap flow and local respiration, concurrently contributed to these temporal variations. Moreover, the explanatory power of potential biological drivers (stem radius changes, sap flow and soil respiration) varied strongly with season and temporal resolution. We conclude that seasonal and daily courses of stem [CO(2)] in spruce trees are a combined effect of physical equilibrium and tree physiological processes. Furthermore, we emphasize the relevance of axial diffusion of CO(2) along air-filled spaces in the wood, and potential wound response processes owing to sensor installation.


Assuntos
Dióxido de Carbono/metabolismo , Picea/metabolismo , Meio Ambiente , Noruega , Picea/fisiologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Estações do Ano
16.
Tree Physiol ; 42(8): 1532-1548, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34740258

RESUMO

Forests are increasingly affected by heatwaves, often co-occurring with drought, with consequences for water and carbon (C) cycling. However, our ability to project tree resilience to more intense hot droughts remains limited. Here, we used single tree chambers (n = 18) to investigate transpiration (E), net assimilation (Anet), root respiration (Rroot) and stem diameter change in Scots pine seedlings in a control treatment and during gradually intensifying heat or drought-heat stress (max. 42 °C), including recovery. Alongside this, we assessed indicators of stress impacts and recovery capacities. In the heat treatment, excessive leaf heating was mitigated via increased E, while under drought-heat, E ceased and leaf temperatures reached 46 °C. However, leaf electrolyte leakage was negligible, while light-adapted quantum yield of photosystem II (F'v/F'm) declined alongside Anet moderately in heat, but strongly in drought-heat seedlings, in which respiration exceeded C uptake. Drought-heat largely affected the hydraulic system as apparent in stem diameter shrinkage, declining relative needle water content (RWCNeedle) and water potential (ΨNeedle) reaching -2.7 MPa, alongside a 90% decline of leaf hydraulic conductance (KLeaf). Heat alone resulted in low functional impairment and all measured parameters recovered quickly. Contrary, following drought-heat, the recovery of KLeaf was incomplete and stem hydraulic conductivity (KS) was 25% lower than the control. However, F'v/F'm recovered and the tree net C balance reached control values 2 days post-stress, with stem increment rates accelerating during the second recovery week. This indicates a new equilibrium of C uptake and release in drought-heat seedlings independent of hydraulic impairment, which may slowly contribute to the repair of damaged tissues. In summary, Scots pine recovered rapidly following moderate heat stress, while combined with drought, hydraulic and thermal stress intensified, resulting in functional damage and slow recovery of hydraulic conductance. This incomplete hydraulic recovery could critically limit evaporative cooling capacities and C uptake under repeated heatwaves.


Assuntos
Secas , Pinus sylvestris , Carbono , Pinus sylvestris/fisiologia , Folhas de Planta/fisiologia , Plântula/fisiologia , Árvores/fisiologia , Água/fisiologia
17.
Tree Physiol ; 42(4): 771-783, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34726242

RESUMO

Global warming and drying trends, as well as the increase in frequency and intensity of droughts, may have unprecedented impacts on various forest ecosystems. We assessed the role of internal water storage (WS) in drought resistance of mature pine trees in the semi-arid Yatir Forest. Transpiration (T), soil moisture and sap flow (SF) were measured continuously, accompanied by periodical measurements of leaf and branch water potential (Ψleaf) and water content (WC). The data were used to parameterize a tree hydraulics model to examine the impact of WS capacitance on the tree water relations. The results of the continuous measurements showed a 5-h time lag between T and SF in the dry season, which peaked in the early morning and early afternoon, respectively. A good fit between model results and observations was only obtained when the empirically estimated WS capacitance was included in the model. Without WS during the dry season, Ψleaf would drop below a threshold known to cause hydraulic failure and cessation of gas exchange in the studied tree species. Our results indicate that tree WS capacitance is a key drought resistance trait that could enhance tree survival in a drying climate, contributing up to 45% of the total daily transpiration during the dry season.


Assuntos
Secas , Árvores , Ecossistema , Florestas , Transpiração Vegetal , Água
18.
Front Plant Sci ; 12: 715127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539705

RESUMO

During drought, trees reduce water loss and hydraulic failure by closing their stomata, which also limits photosynthesis. Under severe drought stress, other acclimation mechanisms are trigged to further reduce transpiration to prevent irreversible conductance loss. Here, we investigate two of them: the reversible impacts on the photosynthetic apparatus, lumped as non-stomatal limitations (NSL) of photosynthesis, and the irreversible effect of premature leaf shedding. We integrate NSL and leaf shedding with a state-of-the-art tree hydraulic simulation model (SOX+) and parameterize them with example field measurements to demonstrate the stress-mitigating impact of these processes. We measured xylem vulnerability, transpiration, and leaf litter fall dynamics in Pinus sylvestris (L.) saplings grown for 54 days under severe dry-down. The observations showed that, once transpiration stopped, the rate of leaf shedding strongly increased until about 30% of leaf area was lost on average. We trained the SOX+ model with the observations and simulated changes in root-to-canopy conductance with and without including NSL and leaf shedding. Accounting for NSL improved model representation of transpiration, while model projections about root-to-canopy conductance loss were reduced by an overall 6%. Together, NSL and observed leaf shedding reduced projected losses in conductance by about 13%. In summary, the results highlight the importance of other than purely stomatal conductance-driven adjustments of drought resistance in Scots pine. Accounting for acclimation responses to drought, such as morphological (leaf shedding) and physiological (NSL) adjustments, has the potential to improve tree hydraulic simulation models, particularly when applied in predicting drought-induced tree mortality.

19.
Tree Physiol ; 30(2): 165-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20008837

RESUMO

Although soil respiration, a major CO(2) flux in terrestrial ecosystems, is known to be highly variable with time, the response of its component fluxes to temperature and phenology is less clear. Therefore, we partitioned soil respiration (SR) into microbial (MR) and root-rhizosphere respiration (RR) using small root exclusion treatments in a mixed mountain forest in Switzerland. In addition, fine root respiration (FRR) was determined with measurements of excised roots. RR and FRR were strongly related to each other (R(2) = 0.92, n = 7), with RR contributing about 46% and FRR about 32% to total SR. RR rates increased more strongly with temperature (Q(10) = 3.2) than MR rates (Q(10) = 2.3). Since the contribution of RR to SR was found to be higher during growing (50%) than during dormant periods (40%), we separated the 2-year data set into phenophases. During the growing period of 2007, the temperature sensitivity of RR (Q(10) = 2.5, R(2) = 0.62) was similar to that of MR (Q(10) = 2.2, R(2) = 0.57). However, during the dormant period of 2006/2007, RR was not related to soil temperature (R(2) = 0.44, n.s.), in contrast to MR (Q(10) = 7.2; R(2) = 0.92). To better understand the influence of plant activity on root respiration, we related RR and FRR rates to photosynthetic active radiation (both R(2) = 0.67, n = 7, P = 0.025), suggesting increased root respiration rates during times with high photosynthesis. During foliage green-up in spring 2008, i.e., from bud break to full leaf expansion, RR increased by a factor of 5, while soil temperature increased only by about 5 degrees C, leading to an extraordinary high Q(10) of 10.6; meanwhile, the contribution of RR to SR increased from 29 to 47%. This clearly shows that root respiration and its apparent temperature sensitivity highly depend on plant phenology and thus on canopy assimilation and carbon allocation belowground.


Assuntos
Ecossistema , Raízes de Plantas/metabolismo , Estações do Ano , Temperatura , Árvores/metabolismo , Dióxido de Carbono/metabolismo , Respiração Celular , Solo/análise , Microbiologia do Solo , Suíça
20.
New Phytol ; 184(4): 950-61, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19843305

RESUMO

*Recent studies have highlighted a direct, fast transfer of recently assimilated C from the tree canopy to the soil. However, the effect of environmental changes on this flux remains largely unknown. *We investigated the effects of drought on the translocation of recently assimilated C, by pulse-labelling 1.5-yr-old beech tree mesocosms with (13)CO(2). (13)C signatures were then measured daily for 1 wk in leaves, twigs, coarse and fine root water-soluble and total organic matter, phloem organic matter, soil microbial biomass and soil CO(2) efflux. *Drought reduced C assimilation and doubled the residence time of recently assimilated C in leaf biomass. In phloem organic matter, the (13)C label peaked immediately after labelling then decayed exponentially in the control treatment, while under drought it peaked 4 d after labelling. In soil microbial biomass, the label peaked 1 d after labelling in the control treatment, whereas under drought no peak was measured. Two days after labelling, drought decreased the contribution of recently assimilated C to soil CO(2) efflux by 33%. *Our study showed that drought reduced the coupling between canopy photosynthesis and belowground processes. This will probably affect soil biogeochemical cycling, with potential consequences including slower soil nitrogen cycling and changes in C-sequestration potential under future climate conditions.


Assuntos
Adaptação Fisiológica , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Carbono/metabolismo , Secas , Fagus/fisiologia , Solo , Biomassa , Marcação por Isótopo , Floema , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Estruturas Vegetais , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA