Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Immunol ; 14: 1123160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304264

RESUMO

Introduction: Patients with end-stage renal disease (ESRD) display defects in adaptive and innate immunity, increasing susceptibility to infection. Staphylococcus aureus (S. aureus) is a major cause of bacteraemia in this population and is associated with increased mortality. More information on the immune response to S. aureus in these patients is needed to inform effective vaccine development. Methods: A longitudinal prospective study was carried out at two medical centers and included 48 ESRD patients who started chronic hemodialysis (HD) treatment ≤3 months before inclusion. Control samples were taken from 62 consenting healthy blood donors. Blood samples were obtained from ESRD patients at each visit, on month (M) 0 (beginning of HD), M6 and M12. Around 50 immunological markers of adaptive and innate immunity were assessed to compare immune responses to S. aureus in ESRD patients versus controls to document the changes on their immune profile during HD. Results: S. aureus survival in whole blood was significantly higher in ESRD patients than in controls at M0 (P=0.049), while impaired oxidative burst activity was observed in ESRD patients at all timepoints (P<0.001). S. aureus-specific immunoglobulin G (IgG) responses to iron surface determinant B (IsdB) and S. aureus α hemolysin (Hla) antigens were lower in ESRD patients than in healthy donors at M0 (P=0.003 and P=0.007, respectively) and M6 (P=0.05 and P=0.03, respectively), but were restored to control levels at M12. Moreover, S. aureus-specific T-helper cell responses were comparable to controls for IsdB but were impaired for Hla antigen at all timepoints: 10% of ESRD patients responded to Hla at M0, increasing to 30% at M12, compared with 45% of healthy donors. B-cell and T-cell concentrations in blood were significantly reduced (by 60% and 40%, respectively) compared with healthy controls. Finally, upregulation of Human Leucocyte Antigen-DR (HLA-DR) and C-C chemokine Receptor type 2 (CCR2) was impaired at M0 but was restored during the first year of HD. Conclusion: All together, these results show that adaptive immunity was largely impaired in ESRD patients, whereas innate immunity was less impacted and tended to be restored by HD.


Assuntos
Falência Renal Crônica , Staphylococcus aureus , Humanos , Estudos Longitudinais , Estudos Prospectivos , Falência Renal Crônica/terapia , Diálise Renal , Imunidade Adaptativa , Imunoglobulina G , Ferro
2.
Mol Ther Nucleic Acids ; 32: 794-806, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37346973

RESUMO

The use of modified nucleosides is an important approach to mitigate the intrinsic immunostimulatory activity of exogenous mRNA and to increase its translation for mRNA therapeutic applications. However, for vaccine applications, the intrinsic immunostimulatory nature of unmodified mRNA could help induce productive immunity. Additionally, the ionizable lipid nanoparticles (LNPs) used to deliver mRNA vaccines can possess immunostimulatory properties that may influence the impact of nucleoside modification. Here we show that uridine replacement with N1-methylpseudouridine in an mRNA vaccine encoding influenza hemagglutinin had a significant impact on the induction of innate chemokines/cytokines and a positive impact on the induction of functional antibody titers in mice and macaques when MC3 or KC2 LNPs were used as delivery systems, while it impacted only minimally the titers obtained with L319 LNPs, indicating that the impact of nucleoside modification on mRNA vaccine efficacy varies with LNP composition. In line with previous observations, we noticed an inverse correlation between the induction of high innate IFN-α titers in the macaques and antigen-specific immune responses. Furthermore, and consistent with the species specificity of pathogen recognition receptors, we found that the effect of uridine replacement did not strictly translate from mice to non-human primates.

3.
Sci Transl Med ; 13(607)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34315825

RESUMO

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike protein trimers (preS dTM) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHPs). Binding and functional neutralization assays and systems serology revealed that the vaccinated NHP developed AS03-dependent multifunctional humoral responses that targeted distinct domains of the spike protein and bound to a variety of Fc receptors mediating immune cell effector functions in vitro. The neutralizing 50% inhibitory concentration titers for pseudovirus and live SARS-CoV-2 were higher than titers for a panel of human convalescent serum samples. NHPs were challenged intranasally and intratracheally with a high dose (3 × 106 plaque forming units) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days after challenge, vaccinated NHPs showed rapid control of viral replication in both the upper and lower airways. Vaccinated NHPs also had increased spike protein-specific immunoglobulin G (IgG) antibody responses in the lung as early as 2 days after challenge. Moreover, passive transfer of vaccine-induced IgG to hamsters mediated protection from subsequent SARS-CoV-2 challenge. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine were sufficient to mediate protection against SARS-CoV-2 in NHPs and that rapid anamnestic antibody responses in the lung may be a key mechanism for protection.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Cricetinae , Imunização Passiva , Pulmão , Primatas , SARS-CoV-2 , Vacinação , Soroterapia para COVID-19
4.
bioRxiv ; 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33688652

RESUMO

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike trimers (preS dTM) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHP). Binding and functional neutralization assays and systems serology revealed that NHP developed AS03-dependent multi-functional humoral responses that targeted multiple spike domains and bound to a variety of antibody FC receptors mediating effector functions in vitro. Pseudovirus and live virus neutralizing IC50 titers were on average greater than 1000 and significantly higher than a panel of human convalescent sera. NHP were challenged intranasally and intratracheally with a high dose (3×106 PFU) of SARS-CoV-2 (USA-WA1/2020 isolate). Two days post-challenge, vaccinated NHP showed rapid control of viral replication in both the upper and lower airways. Notably, vaccinated NHP also had increased spike-specific IgG antibody responses in the lung as early as 2 days post challenge. Moreover, vaccine-induced IgG mediated protection from SARS-CoV-2 challenge following passive transfer to hamsters. These data show that antibodies induced by the AS03-adjuvanted preS dTM vaccine are sufficient to mediate protection against SARS-CoV-2 and support the evaluation of this vaccine in human clinical trials.

5.
NPJ Vaccines ; 5: 83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983577

RESUMO

Enterotoxigenic E. coli (ETEC) is a leading cause of moderate-to-severe diarrhoea. ETEC colonizes the intestine through fimbrial tip adhesin colonization factors and produces heat-stable and/or heat-labile (LT) toxins, stimulating fluid and electrolyte release leading to watery diarrhoea. We reported that a vaccine containing recombinant colonization factor antigen (CfaEB) targeting fimbrial tip adhesin of the colonization factor antigen I (CFA/I) and an attenuated LT toxoid (dmLT) elicited mucosal and systemic immune responses against both targets. Additionally, the toll-like receptor 4 ligand second-generation lipid adjuvant (TLR4-SLA) induced a potent mucosal response, dependent on adjuvant formulation. However, a combination of vaccine components at their respective individual optimal doses may not achieve the optimal immune profile. We studied a subunit ETEC vaccine prototype in mice using a response surface design of experiments (DoE), consisting of 64 vaccine dose-combinations of CfaEB, dmLT and SLA in four formulations (aqueous, aluminium oxyhydroxide, squalene-in-water stable nanoemulsion [SE] or liposomes containing the saponin Quillaja saponaria-21 [LSQ]). Nine readouts focusing on antibody functionality and plasma cell response were selected to profile the immune response of parenterally administered ETEC vaccine prototype. The data were integrated in a model to identify the optimal dosage of each vaccine component and best formulation. Compared to maximal doses used in mouse models (10 µg CfaEB, 1 µg dmLT and 5 µg SLA), a reduction in the vaccine components up to 37%, 60% and 88% for CfaEB, dmLT and SLA, respectively, maintained or even maximized immune responses, with SE and LSQ the best formulations. The DoE approach can help determine the best vaccine composition with a limited number of experiments and may accelerate development of multi-antigen/component ETEC vaccines.

6.
NPJ Vaccines ; 4: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31149350

RESUMO

Many pathogens establish infection at mucosal surfaces such as the enteric pathogen Enterotoxigenic E. coli (ETEC). Thus, there is a pressing need for effective vaccination strategies that promote protective immunity at mucosal surfaces. Toll-like receptor (TLR) ligands have been extensively developed as vaccine adjuvants to promote systemic immunity, whereas attenuated bacterial toxins including cholera toxin and heat-labile toxin (LT) have initially been developed to promote mucosal immunity. Here we evaluate the ability of the TLR4 agonist second-generation lipid adjuvant formulated in a stable emulsion (SLA-SE) to augment functional mucosal antibodies elicited by intramuscular immunization with a recombinant ETEC vaccine antigen. We find that, in mice, parenterally delivered SLA-SE is at least as effective as the double-mutant LT (LTR192G/L211A, dmLT) adjuvant in promoting functional antibodies and eliciting intestinal IgA responses to the vaccine antigen. In addition, SLA-SE enhanced both the IgG2a response in the mucosa and serum, and the production of LT neutralizing serum antibodies elicited by dmLT four to eightfold. These results reveal unexpected mucosal adjuvant properties of this TLR4 agonist adjuvant when delivered intramuscularly. This may have a substantial impact on the development of vaccines against enteric and other mucosal pathogens.

7.
Microbes Infect ; 9(14-15): 1614-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17905628

RESUMO

Our results show that exosomes secreted by SRDC pulsed in vitro with Toxoplasma gondii-derived antigens (Exo-TAg) induced protective responses against infection with the parasite in both syngeneic and allogeneic mice. After oral infection, syngeneic CBA/J mice exhibited significantly fewer cysts in their brains and allogeneic C57BL/6 mice survived. This protection was associated with strong humoral responses in vivo in serum from both CBA/J and C57BL/6 mice, and with high levels of anti-TAg IgA antibodies in intestinal secretions from CBA/J mice alone. Furthermore, strong cellular responses in vivo were observed in both mouse models. Cellular proliferation was associated with cytokines production by spleen and mesenteric lymph node cells. The results presented here show that exosomes are nucleic acid free vesicles that are able to induce immune responses correlated with protection against parasitic infections in both syngeneic and allogeneic mice. They could constitute an efficient tool for use in vaccination and antitumor strategies based on exosomes.


Assuntos
Antígenos de Protozoários/imunologia , Vesículas Citoplasmáticas/metabolismo , Células Dendríticas/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/prevenção & controle , Transferência Adotiva , Animais , Anticorpos Antiprotozoários/sangue , Linhagem Celular , Células Dendríticas/transplante , Células Dendríticas/ultraestrutura , Exocitose , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Vacinas Protozoárias/administração & dosagem , Toxoplasma/patogenicidade , Toxoplasmose Animal/imunologia , Transplante Homólogo , Transplante Isogênico
8.
Cell Microbiol ; 7(11): 1659-71, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16207252

RESUMO

Dendritic cells (DCs) play an essential role in the induction of immune responses to pathogen infections. Native DCs are difficult to obtain in large numbers and consequently the vast majority of DCs employed in all experiments are derived from bone marrow progenitors. In an attempt to solve this problem, we have established a novel CD8alpha(+) DC line (H-2(k)) from spleen, which we have named SRDC line, and which is easy to culture in vitro. These cells display similar morphology, phenotype and activity to CD4(-)CD8alpha(+)CD205(+)CD11b(-) DCs purified ex vivo. Toxoplasma gondii antigen was shown to be taken up by these cells and to increase class I and class II major histocompatibility complex (MHC), CD40, CD80 and CD86 surface expression. We report that vaccination with T. gondii antigen-pulsed SRDCs, which synthesize large amounts of interleukin-12, induced protective immune responses against this intracellular pathogen in syngeneic CBA/J mice. This protection was associated with strong cellular and humoral immune responses at systemic and intestinal levels. Spleen and mesenteric lymph node cell proliferations were correlated with a Th1/Th2-type response and a specific SRDC homing to spleen and intestine was observed. The SRDC or CD4(-)CD8alpha(+)CD205(+)CD11b(-) DC line can be expected to be a very useful tool for immunobiology studies of DC.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Vacinas Protozoárias/administração & dosagem , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Protozoários/imunologia , Antígeno CD11b/metabolismo , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Linhagem Celular , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Antígenos de Histocompatibilidade Menor , Vacinas Protozoárias/imunologia , Receptores de Superfície Celular/metabolismo , Baço/citologia , Toxoplasmose/prevenção & controle , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA