Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Environ Manage ; 317: 115364, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617865

RESUMO

Microplastics (MP) are ubiquitous contaminants and their presence in sewage sludge has recently received attention as they may enter agro-ecosystems if sludge is used as organic soil amendment. Indeed, plastic particles (<5 mm) can be transported from wastewater and sewage sludge to the soil environment either directly within the plastic matrix or indirectly as adsorbed substances. In this paper, articles from 18 countries reporting the MP quantity and their characteristics in sewage sludge from wastewater treatment plants were reviewed and the MP concentration size and type were compared. The data show that MP abundance in sewage sludge ranged globally from 7.91 to 495 × 103 particles kg-1 with highest abundance of fiber shape and MP size of less than 500 µm. In this review, we summarized and discussed the methods most frequently used for extraction and characterization of MP in sewage sludge including organic matter removal, MP extraction; physical and morphological MP characterization and its chemical characterization for polymer identification. We also described the major factors potentially controlling the fate of MP during disposal strategies with particular focus on composting. We show that physical and microbiological factors are important for MP degradation during composting and suggest two remediation practices: (i) inoculation of the initial sludge with microbial plastic decomposers to remove MP from contaminated sewage sludge, and (ii) development of high temperature composting processes.


Assuntos
Compostagem , Microplásticos , Ecossistema , Plásticos , Esgotos/química , Solo
2.
Nature ; 572(7770): 442-443, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31435061
3.
J Environ Manage ; 275: 111249, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836169

RESUMO

Lagooning sludge (LS), which is used as soil amendment in Morocco, may contain microplastics (MPs). The aim of this study was to examine the effect of dewatering and co-composting of LS with green waste (GW) on the MPs' evolution. In this context the present study proposes fast-preliminary steps to detect plastics in lagooning sewage sludge before the extraction and identification process. We used pyrolysis GC/MS spectrometry to investigate the presence of chemical compounds possibly derived from plastics, and fluorescence staining by Nile Red to detect fluorescent particles suspected as plastics. Thereafter, we quantified the MPs particles after density fractionation and investigated their nature by Raman spectroscopy. RESULTS: indicated the presence of an average of 40.5 ± 11.9 × 103 MPs particles/kg (dry matter) and 36 ± 9.7 × 103 MPs particles/kg (dry matter) in fresh sludge and dewatered sludge respectively. Sludge dewatering in drying beds resulted a loss of small MPs (<500 µm). In co-composts, the quantity of MPs varied with the proportion of sewage sludge. The distribution of MPs types differentiated by colour and types (polypropylene, polyethylene, polyamide and polyester) evolved differently. Conventional co-composting did not have any effect on MPs quantity, indicating that they are not biodegradable under these temperature conditions, but it influenced their particle size. The risks of these pollutants after repeated field application and the possibility of their reduction through others co-composting procedures and techniques would be further investigated.


Assuntos
Compostagem , Esgotos , Microplásticos , Marrocos , Plásticos , Pirólise , Análise Espectral Raman , Coloração e Rotulagem
8.
Glob Chang Biol ; 22(3): 1008-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26301476

RESUMO

Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Poluição Ambiental/efeitos adversos , Solo
9.
Glob Chang Biol ; 20(7): 2272-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24323640

RESUMO

Lignin is an aromatic plant compound that decomposes more slowly than other organic matter compounds; however, it was recently shown that lignin could decompose as fast as litter bulk carbon in minerals soils. In alpine Histosols, where organic matter dynamics is largely unaffected by mineral constituents, lignin may be an important part of soil organic matter (SOM). These soils are expected to experience alterations in temperature and/or physicochemical parameters as a result of global climate change. The effect of these changes on lignin dynamics remains to be examined and the importance of lignin as SOM compound in these soils evaluated. Here, we investigated the decomposition of individual lignin phenols of maize litter incubated for 2 years in-situ in Histosols on an Alpine elevation gradient (900, 1300, and 1900 m above sea level); to this end, we used the cupric oxide oxidation method and determined the phenols' (13) C signature. Maize lignin decomposed faster than bulk maize carbon in the first year (86 vs. 78% decomposed); however, after the second year, lignin and bulk C decomposition did not differ significantly. Lignin mass loss did not correlate with soil temperature after the first year, and even correlated negatively at the end of the second year. Lignin mass loss also correlated negatively with the remaining maize N at the end of the second year, and we interpreted this result as a possible negative influence of nitrogen on lignin degradation, although other factors (notably the depletion of easily degradable carbon sources) may also have played a role at this stage of decomposition. Microbial community composition did not correlate with lignin mass loss, but it did so with the lignin degradation indicators (Ac/Al)s and S/V after 2 years of decomposition. Progressing substrate decomposition toward the final stages thus appears to be linked with microbial community differentiation.


Assuntos
Carbono/metabolismo , Lignina/metabolismo , Microbiologia do Solo , Solo/química , Zea mays/química , Altitude , Isótopos de Carbono/análise , Mudança Climática , Cobre/metabolismo , Fenóis/metabolismo , Estações do Ano , Temperatura
10.
Rapid Commun Mass Spectrom ; 28(21): 2337-40, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25279747

RESUMO

RATIONALE: The efficiency of extraction procedures for the determination of organic compounds in soil may be affected by the presence of the mineral phase. Our aim was to analyse the magnitude of such an effect on both total polysaccharide content and (13)C-isotopic signature of the polysaccharides. METHODS: After acid hydrolysis of (13)C-labelled wheat, soil and a mixture of these, sugars were quantified and analysed isotopically. Measured values were compared with theoretical contents. RESULTS: No matrix effect was apparent for total sugar-C content of the mixture. However, a matrix effect was observed for the contribution of (13)C-labelled wheat sugars. For the soil+plant mixture (13)C-labelled wheat sugar contribution was overestimated. Soil-derived sugar-C contribution to the mixture was underestimated. CONCLUSIONS: Studies using stable isotopes to follow the fate of added plant-derived compounds in soil need to take into account matrix effects. Further studies have to elaborate on correction procedures and/or the development of extraction procedures to overcome the influence of matrix effects and/or acid hydrolysis extraction on sugar-C contents.


Assuntos
Minerais/análise , Plantas/química , Polissacarídeos/química , Solo/química , Isótopos de Carbono/análise
11.
Nature ; 450(7167): 277-80, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994095

RESUMO

The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.


Assuntos
Carbono/química , Carbono/metabolismo , Solo/análise , Biomassa , Carbono/análise , Dióxido de Carbono/metabolismo , Celulose/metabolismo , Espectroscopia de Ressonância Magnética , Plantas/metabolismo
12.
Sci Total Environ ; 893: 164550, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37295529

RESUMO

Grassland management practices vary in stocking rates and plant removal strategies (grazing versus mowing). They influence organic matter (OM) inputs, which were postulated as main controls of soil organic carbon (SOC) sequestration and might therefore control SOC stabilization. The aim of this study was to test this hypothesis by investigating the impacts of grassland harvesting regimes on parameters related to soil microbial functioning and soil organic matter (SOM) formation processes. We used a thirteen-year experiment in Central France under contrasting management (unmanaged, grazing with two intensities, mowing, bare fallow) to establish a carbon input gradient based on biomass leftovers after harvest. We investigated microbial biomass, basal respiration and enzyme activities as indicators of microbial functioning, and amino sugar content and composition as indicator of persistent SOM formation and origin through necromass accumulation. Responses of these parameters to carbon input along the gradient were contrasting and in most cases unrelated. Only the microbial C/N ratio and amino sugar contents showed a linear response indicating that they are influenced by plant-derived OM input. Other parameters were most probably more influenced by root activity, presence of herbivores, and/or physicochemical changes following management activities impacting soil microbial functioning. Grassland harvesting strategies influence SOC sequestration not only by changing carbon input quantity, but also through their effects on belowground processes possibly related to changing carbon input types and physiochemical soil properties.


Assuntos
Pradaria , Solo , Biomassa , Solo/química , Carbono/química , Herbivoria , Microbiologia do Solo
13.
Sci Total Environ ; 856(Pt 1): 158920, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36181810

RESUMO

Due to increased drought frequency following climate change, practices improving water use efficiency and reducing water-stress are needed. The efficiency of organic amendments to improve plant growth conditions under drought is poorly known. Our aim was to investigate if organic amendments can attenuate plant water-stress due to their effect on the plant-soil system and if this effect may increase upon ageing. To this end we determined plant and soil responses to water shortage and organic amendments added to soil. We compared fresh biochar/compost mixtures to similar amendments after ageing in soil. Results indicated that amendment application induced few plant physiological responses under water-stress. The reduction of leaf gas exchange under watershortage was alleviated when plants were grown with biochar and compost amendments: stomatal conductance was least reduced with aged mixture aged mixture (-79 % compared to -87 % in control), similarly to transpiration (-69 % in control and not affected with aged mixture). Belowground biomass production (0.25 times) and nodules formation (6.5 times) were enhanced under water-stress by amendment addition. This effect was improved when grown on soil containing the aged as compared to fresh amendments. Plants grown with aged mixtures also showed reduced leaf proline concentrations (two to five times) compared to fresh mixtures indicating stress reduction. Soil enzyme activities were less affected by water-stress in soil with aged amendments. We conclude that the application of biochar-compost mixtures may be a solution to reduce the effect of water-stress to plants. Our findings revealed that this beneficial effect is expected to increase with aged mixtures, leading to a better water-stress resistance over time. However, while being beneficial for plant growth under water-stress, the use of amendments may not be suited to increase water use efficiency.


Assuntos
Compostagem , Poluentes do Solo , Solo , Secas , Carvão Vegetal/farmacologia , Poluentes do Solo/análise , Plantas , Água
14.
J Hazard Mater ; 448: 130992, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860064

RESUMO

Evidence on the contribution of root regions with varied maturity levels in iron plaque (IP) formation and root exudation of metabolites and their consequences for uptake and bioavailability of chromium (Cr) remains unknown. Therefore, we applied combined nanoscale secondary ion mass spectrometry (NanoSIMS) and synchrotron-based techniques, micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption near-edge structure (µ-XANES) to examine the speciation and localisation of Cr and the distribution of (micro-) nutrients in rice root tip and mature region. µ-XRF mapping revealed that the distribution of Cr and (micro-) nutrients varied between root regions. Cr K-edge XANES analysis at Cr hotspots attributed the dominant speciation of Cr in outer (epidermal and sub-epidermal) cell layers of the root tips and mature root to Cr(III)-FA (fulvic acid-like anions) (58-64%) and Cr(III)-Fh (amorphous ferrihydrite) (83-87%) complexes, respectively. The co-occurrence of a high proportion of Cr(III)-FA species and strong co-location signals of 52Cr16O and 13C14N in the mature root epidermis relative to the sub-epidermis indicated an association of Cr with active root surfaces, where the dissolution of IP and release of their associated Cr are likely subject to the mediation of organic anions. The results of NanoSIMS (poor 52Cr16O and 13C14N signals), dissolution (no IP dissolution) and µ-XANES (64% in sub-epidermis >58% in the epidermis for Cr(III)-FA species) analyses of root tips may be indicative of the possible re-uptake of Cr by this region. The results of this research work highlight the significance of IP and organic anions in rice root systems on the bioavailability and dynamics of heavy metals (e.g. Cr).


Assuntos
Ferro , Oryza , Cromo , Meristema , Disponibilidade Biológica
15.
Microorganisms ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375102

RESUMO

The present study examined the biosynthesis and characterization of selenium nanoparticles (SeNPs) using two contrasting endophytic selenobacteria, one Gram-positive (Bacillus sp. E5 identified as Bacillus paranthracis) and one Gram-negative (Enterobacter sp. EC5.2 identified as Enterobacter ludwigi), for further use as biofortifying agents and/or for other biotechnological purposes. We demonstrated that, upon regulating culture conditions and selenite exposure time, both strains were suitable "cell factories" for producing SeNPs (B-SeNPs from B. paranthracis and E-SeNPs from E. ludwigii) with different properties. Briefly, dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) studies revealed that intracellular E-SeNPs (56.23 ± 4.85 nm) were smaller in diameter than B-SeNPs (83.44 ± 2.90 nm) and that both formulations were located in the surrounding medium or bound to the cell wall. AFM images indicated the absence of relevant variations in bacterial volume and shape and revealed the existence of layers of peptidoglycan surrounding the bacterial cell wall under the conditions of biosynthesis, particularly in the case of B. paranthracis. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) showed that SeNPs were surrounded by the proteins, lipids, and polysaccharides of bacterial cells and that the numbers of the functional groups present in B-SeNPs were higher than in E-SeNPs. Thus, considering that these findings support the suitability of these two endophytic stains as potential biocatalysts to produce high-quality Se-based nanoparticles, our future efforts must be focused on the evaluation of their bioactivity, as well as on the determination of how the different features of each SeNP modulate their biological action and their stability.

16.
Rapid Commun Mass Spectrom ; 26(17): 1934-40, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22847691

RESUMO

RATIONALE: The objective of this investigation was to test gas-chromatographic compound-specific analysis for studies on the isotopic composition of (13)C-enriched sugar molecules. The effects of (13)C enrichment and type of sugar (C5, C6) will provide valuable information on isotopic correction for future studies employing (13)C-enriched sugars. METHODS: Five sugar solutions of xylose, mannose and glucose with (13)C enrichments ranging between 1.1 and 1.5 atom-% were prepared. The (13)C enrichments of the initial sugars were measured by elemental analyser/isotope ratio mass spectrometry (EA/IRMS); (13)C enrichments for derivatised sugars were obtained by gas chromatography/combustion/IRMS (GC/C/IRMS). RESULTS: The linear relationships between the (13)C enrichments of the initial sugars and the values for the derivatised sugars were sugar-type dependent. Corrections for GC/C/IRMS values took into account the kinetic isotope effect (KIE) of the derivatising agent associated with the coefficient (K(d)) and a newly introduced second coefficient (K(c)) associated with the KIE of the sugar. While K(d) was constant, K(c) varied with sugar type. During derivatisation acetate groups with (12)C and sugars with more (13)C reacted faster. CONCLUSIONS: Coefficients for the specific ranges of (13)C enrichments under study have to be assessed and the reactions of different sugar types have to be taken into account to avoid underestimation of (13)C enrichment of up to 9% (C5) or overestimation of up to 4% (C6).


Assuntos
Isótopos de Carbono/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Monossacarídeos/análise , Isótopos de Carbono/química , Modelos Lineares , Monossacarídeos/química
17.
Environ Pollut ; 315: 120369, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228852

RESUMO

Microplastic (MP) input into agroecosystems is of particular concern as their sources are diverse (mulching films, biosolid application, wastewater irrigation, flooding, atmospheric input, road runoff). Compost application, which is needed to sustain soil ecosystem services in the context of a circular economy, may be a source of microplastics. The aim of this study was to evaluate how different composts derived from urban wastes impact the nature and quantity of coarse (2-5 mm) microplastics (CMP) in soils, using a long-term field experiment in France. Composts resulting from different levels of urban waste sorting were investigated. Our approach included the isolation of microplastics from composts and amended soils followed by their characterization using pyrolysis GC/MS spectrometry. We found that coarse microplastic concentrations varied from 26.9 to 417 kg per hectare depending on the compost type, after 22 years of bi-annual application. These values may be higher than for conventional agricultural practices, as application rate was twice as high as for normal practices. Composts made from municipal solid waste were by far the organic amendments leading to the highest quantity of plastic particles in soils, emphasizing the urgent need for limiting plastic use in packaging and for improving household biowaste sorting. Our results strongly suggest that standards regulating organic matter amendment application should take microplastics into account in order to prevent contamination of (agricultural) soils. Moreover, although no impacts on the soil bio-physico-chemical parameters has been noted so far. However, given the huge microplastic inputs, there is an urgent need to better evaluate their effect on soil functioning.


Assuntos
Compostagem , Poluentes do Solo , Solo/química , Microplásticos , Plásticos , Ecossistema , Poluentes do Solo/análise
18.
Sci Total Environ ; 704: 135460, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812385

RESUMO

Evaluation of the temperature sensitivity of soil organic matter (SOM) decomposition is critical for forecasting whether soils in a warming world will lose or gain carbon and, therefore, accelerate or mitigate climate warming. It is usually described, using Arrhenius kinetics, as increasing with the stability of the substrate in laboratory conditions, where substrate availability is non-limiting and where chemical recalcitrance, therefore, predominantly regulates stability. However, conditions of non-limiting subtrate availability are rare in the undisturbed soil, where physicochemical protection of substrates may control their stability. The aim of this study was to assess the temperature sensitivity of decomposition of SOM with contrasting stability in the field. Our conceptual approach was based on in situ measurements of soil CO2 efflux at a range of temperatures from root exclusion plots of increasing age (1 month and three decades) and, therefore, with SOM of increasing stability. From a set of short-term measurements in spring, using diurnal temperature variation, the relative temperature sensitivity of SOM decomposition decreased significantly (p < 0.0001) with increasing SOM stability, and was weak (Q10 < 1.3) in long-term root exclusion plots. This result was confirmed in a similar set of short-term measurements repeated later in the year, in summer, as well as from an analysis perfomed at the seasonal timscale. We provide direct field evidence that the temperature sensitivity of SOM decomposition decreases with increasing stability, in direct contrast with Arrhenius kinetics prediction, and therefore show that stability of SOM in the field cannot be the sole result of chemical recalcitrance. We conclude that the physicochemical protection of SOM, which controls SOM stability in the field, constrains the temperature sensitivity of SOM decomposition under field conditions.

19.
Ambio ; 49(1): 350-360, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30905053

RESUMO

Climate change adaptation, mitigation and food security may be addressed at the same time by enhancing soil organic carbon (SOC) sequestration through environmentally sound land management practices. This is promoted by the "4 per 1000" Initiative, a multi-stakeholder platform aiming at increasing SOC storage through sustainable practices. The scientific and technical committee of the Initiative is working to identify indicators, research priorities and region-specific practices needed for their implementation. The Initiative received its name due to the global importance of soils for climate change, which can be illustrated by a thought experiment showing that an annual growth rate of only 0.4% of the standing global SOC stocks would have the potential to counterbalance the current increase in atmospheric CO2. However, there are numerous barriers to the rise in SOC stocks and while SOC sequestration can contribute to partly offsetting greenhouse gas emissions, its main benefits are related to increased soil quality and climate change adaptation. The Initiative provides a collaborative platform for policy makers, practitioners, scientists and stakeholders to engage in finding solutions. Criticism of the Initiative has been related to the poor definition of its numerical target, which was not understood as an aspirational goal. The objective of this paper is to present the aims of the initiative, to discuss critical issues and to present challenges for its implementation. We identify barriers, risks and trade-offs and advocate for collaboration between multiple parties in order to stimulate innovation and to initiate the transition of agricultural systems toward sustainability.


Assuntos
Carbono , Solo , Agricultura , Sequestro de Carbono , Desenvolvimento Sustentável
20.
ISME J ; 13(9): 2346-2362, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31123321

RESUMO

Decomposition is a major flux of the carbon cycle in forest soils and understanding the involved processes is a key for budgeting carbon turnover. Decomposition is constrained by the presence of biological agents such as microorganisms and the underlying environmental conditions such as water availability. A metabarcoding approach of ribosomal markers was chosen to study the succession of bacterial and fungal decomposers on root litter. Litterbags containing pine roots were buried in a pine forest for two years and sequentially sampled. Decomposition and the associated communities were surveyed under ambient dry and long-term irrigation conditions. Early decomposition stages were characterized by the presence of fast-cycling microorganisms such as Bacteroidetes and Helotiales, which were then replaced by more specialized bacteria and litter-associated or parasitic groups such as Acidobacteria, white rots, and Pleosporales. This succession was likely driven by a decrease of easily degradable carbohydrates and a relative increase in persistent compounds such as lignin. We hypothesize that functional redundancy among the resident microbial taxa caused similar root decomposition rates in control and irrigated forest soils. These findings have important implications for drought-prone Alpine forests as frequent drought events reduce litter fall, but not litter decomposition, potentially resulting in lower carbon stocks.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Pinus sylvestris/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Carbono/metabolismo , Ciclo do Carbono , Secas , Florestas , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Pinus sylvestris/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA