Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(5): 1271-1295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480536

RESUMO

Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.


Assuntos
Caenorhabditis elegans , Síndromes Neurotóxicas , Animais , Humanos , Peixe-Zebra , Testes de Toxicidade/métodos , Síndromes Neurotóxicas/etiologia
2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928240

RESUMO

Extracellular vesicles (EVs) hold great promise for clinical application as new diagnostic and therapeutic modalities. This paper describes major GMP-based upstream and downstream manufacturing processes for EV large-scale production, also focusing on post-processing technologies such as surface bioengineering and uploading studies to yield novel EV-based diagnostics and advanced therapy medicinal products. This paper also focuses on the quality, safety, and efficacy issues of the bioengineered EV drug candidates before first-in-human studies. Because clinical trials involving extracellular vesicles are on the global rise, this paper encompasses different clinical studies registered on clinical-trial register platforms, with varying levels of advancement, highlighting the growing interest in EV-related clinical programs. Navigating the regulatory affairs of EVs poses real challenges, and obtaining marketing authorization for EV-based medicines remains complex due to the lack of specific regulatory guidelines for such novel products. This paper discusses the state-of-the-art regulatory knowledge to date on EV-based diagnostics and medicinal products, highlighting further research and global regulatory needs for the safe and reliable implementation of bioengineered EVs as diagnostic and therapeutic tools in clinical settings. Post-marketing pharmacovigilance for EV-based medicinal products is also presented, mainly addressing such topics as risk assessment and risk management.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Animais
3.
Mutagenesis ; 38(4): 183-191, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234002

RESUMO

Genotoxicity testing for nanomaterials remains challenging as standard testing approaches require some adaptation, and further development of nano-specific OECD Test Guidelines (TGs) and Guidance Documents (GDs) are needed. However, the field of genotoxicology continues to progress and new approach methodologies (NAMs) are being developed that could provide relevant information on the range of mechanisms of genotoxic action that may be imparted by nanomaterials. There is a recognition of the need for implementation of new and/or adapted OECD TGs, new OECD GDs, and utilization of NAMs within a genotoxicity testing framework for nanomaterials. As such, the requirements to apply new experimental approaches and data for genotoxicity assessment of nanomaterials in a regulatory context is neither clear, nor used in practice. Thus, an international workshop with representatives from regulatory agencies, industry, government, and academic scientists was convened to discuss these issues. The expert discussion highlighted the current deficiencies that exist in standard testing approaches within exposure regimes, insufficient physicochemical characterization, lack of demonstration of cell or tissue uptake and internalization, and limitations in the coverage of genotoxic modes of action. Regarding the latter aspect, a consensus was reached on the importance of using NAMs to support the genotoxicity assessment of nanomaterials. Also highlighted was the need for close engagement between scientists and regulators to (i) provide clarity on the regulatory needs, (ii) improve the acceptance and use of NAM-generated data, and (iii) define how NAMs may be used as part of weight of evidence approaches for use in regulatory risk assessments.


Assuntos
Nanoestruturas , Organização para a Cooperação e Desenvolvimento Econômico , Testes de Mutagenicidade/métodos , Nanoestruturas/toxicidade , Nanoestruturas/química , Medição de Risco
4.
Adv Exp Med Biol ; 1357: 351-375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583651

RESUMO

For safety assessment of nanomaterials (NMs), in vitro genotoxicity data based on well-designed experiments is required. Metal-based NMs are amongst the most used in consumer products. In this chapter, we report results for three metal-based NMs, titanium dioxide (NM-100), cerium dioxide (NM-212) and silver (NM-302) in V79 cells, using a set of in vitro genotoxicity assays covering different endpoints: the medium-throughput comet assay and its modified version (with the enzyme formamidopyrimidine DNA glycosylase, Fpg), measuring DNA strand beaks (SBs) and oxidized purines, respectively; the micronucleus (MN) assay, assessing chromosomal damage; and the Hprt gene mutation test. The results generated by this test battery showed that all NMs displayed genotoxic potential. NM-100 induced DNA breaks, DNA oxidation damage and point mutations but not chromosome instability. NM-212 increased the level of DNA oxidation damage, point mutations and increased the MN frequency at the highest concentration tested. NM-302 was moderately cytotoxic and induced gene mutations, but not DNA or chromosome damage. In conclusion, the presented in vitro genotoxicity testing strategy allowed the identification of genotoxic effects caused by three different metal-based NMs, raising concern as to their impact on human health. The results support the use of this in vitro test battery for the genotoxicity assessment of NMs, reducing the use of more expensive, time-consuming and ethically demanding in vivo assays, in compliance with the 3 R's.


Assuntos
Benchmarking , Nanoestruturas , Animais , Ensaio Cometa/métodos , DNA , Dano ao DNA , Humanos , Testes de Mutagenicidade/métodos , Nanoestruturas/toxicidade
5.
Small ; 17(15): e2006012, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458959

RESUMO

Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal-free risk assessment of new chemicals and drugs. Microfluidic cell-based devices allow high-throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal-free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo-like in vitro cell cultivation. It is equipped with a wafer-based silicon chip including integrated electrodes and a microcavity. A proof-of-concept using different relevant cell models shows its suitability for label-free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label-free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole-body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.


Assuntos
Técnicas Analíticas Microfluídicas , Preparações Farmacêuticas , Animais , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Dispositivos Lab-On-A-Chip , Microfluídica
6.
Chem Res Toxicol ; 33(8): 2054-2071, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32600046

RESUMO

Understanding nanomaterial (NM)-protein interactions is a key issue in defining the bioreactivity of NMs with great impact for nanosafety. In the present work, the complex phenomena occurring at the bio/nano interface were evaluated in a simple case study focusing on NM-protein binding thermodynamics and protein stability for three representative metal oxide NMs, namely, zinc oxide (ZnO; NM-110), titanium dioxide (TiO2; NM-101), and silica (SiO2; NM-203). The thermodynamic signature associated with the NM interaction with an abundant protein occurring in most cell culture media, bovine serum albumin (BSA), has been investigated by isothermal titration and differential scanning calorimetry. Circular dichroism spectroscopy offers additional information concerning adsorption-induced protein conformational changes. The BSA adsorption onto NMs is enthalpy-controlled, with the enthalpic character (favorable interaction) decreasing as follows: ZnO (NM-110) > SiO2 (NM-203) > TiO2 (NM-101). The binding of BSA is spontaneous, as revealed by the negative free energy, ΔG, for all systems. The structural stability of the protein decreased as follows: TiO2 (NM-101) > SiO2 (NM-203) > ZnO (NM-110). As protein binding may alter NM reactivity and thus the toxicity, we furthermore assessed its putative influence on DNA damage, as well as on the expression of target genes for cell death (RIPK1, FAS) and oxidative stress (SOD1, SOD2, CAT, GSTK1) in the A549 human alveolar basal epithelial cell line. The enthalpic component of the BSA-NM interaction, corroborated with BSA structural stability, matched the ranking for the biological alterations, i.e., DNA strand breaks, oxidized DNA lesions, cell-death, and antioxidant gene expression in A549 cells. The relative and total content of BSA in the protein corona was determined using mass-spectrometry-based proteomics. For the present case study, the thermodynamic parameters at bio/nano interface emerge as key descriptors for the dominant contributions determining the adsorption processes and NMs toxicological effect.


Assuntos
Nanoestruturas/toxicidade , Soroalbumina Bovina/antagonistas & inibidores , Dióxido de Silício/toxicidade , Termodinâmica , Titânio/toxicidade , Óxido de Zinco/toxicidade , Células A549 , Adsorção , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Nanoestruturas/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Titânio/química , Células Tumorais Cultivadas , Óxido de Zinco/química
7.
Mutagenesis ; 32(1): 117-126, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838631

RESUMO

There is serious concern about the potential harmful effects of certain nanomaterials (NMs), on account of their ability to penetrate cell membranes and the increased reactivity that results from their increased surface area compared with bulk chemicals. To assess the safety of NMs, reliable tests are needed. We have investigated the possible genotoxicity of four representative NMs, derived from titanium dioxide, zinc oxide, cerium oxide and silver, in two human cell lines, A549 alveolar epithelial cells and lymphoblastoid TK6 cells. A high-throughput version of the comet assay was used to measure DNA strand beaks (SBs) as well as oxidised purines (converted to breaks with the enzyme formamidopyrimidine DNA glycosylase). In parallel, cytotoxicity was measured with the alamarBlue® assay, and the ability of NM-treated cells to survive was assessed by their colony-forming efficiency. TiO2 and CeO2 NMs were only slightly cytotoxic by the alamarBlue® test, and had no long-term effect on colony-forming efficiency. However, both induced DNA damage at non-cytotoxic concentrations; the damage decreased from 3 to 24-h exposure, except in the case of CeO2-treated A549 cells. ZnO and Ag NMs affected cell survival, and induced high levels of DNA damage at cytotoxic concentrations. At lower concentrations, there was significant damage, which tended to persist over 24 h. The implication is that all four reference metal NMs tested-whether cytotoxic or not-are genotoxic. A full assessment of NM toxicity should include tests on different cell types, different times of incubation and a wide range of (especially non-cytotoxic) concentrations; a test for cell viability should be performed in parallel. Inclusion of Fpg in the comet assay allows detection of indirect genotoxic effects via oxidative stress.


Assuntos
Dano ao DNA , Nanopartículas Metálicas/toxicidade , Linhagem Celular , Sobrevivência Celular , Ensaio Cometa , DNA/efeitos dos fármacos , DNA-Formamidopirimidina Glicosilase , Proteínas de Escherichia coli , Humanos , Estresse Oxidativo/efeitos dos fármacos
9.
ACS Appl Mater Interfaces ; 16(25): 31997-32016, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869318

RESUMO

Personalized medicine is a new approach to modern oncology. Here, to facilitate the application of extracellular vesicles (EVs) derived from lung cancer cells as potent advanced therapy medicinal products in lung cancer, the EV membrane was functionalized with a specific ligand for targeting purposes. In this role, the most effective heptapeptide in binding to lung cancer cells (PTHTRWA) was used. The functionalization process of EV surface was performed through the C- or N-terminal end of the heptapeptide. To prove the activity of the EVs functionalized with PTHTRWA, both a model of lipid membrane mimicking normal and cancerous cell membranes as well as human adenocarcinomic alveolar basal epithelial cells (A549) and human normal bronchial epithelial cells (BEAS-2B) have been exposed to these bioconstructs. Magnetic resonance imaging (MRI) showed that the as-bioengineered PTHTRWA-EVs loaded with superparamagnetic iron oxide nanoparticle (SPIO) cargos reach the growing tumor when dosed intravenously in NUDE Balb/c mice bearing A549 cancer. Molecular dynamics (MD) in silico studies elucidated a high affinity of the synthesized peptide to the α5ß1 integrin. Preclinical safety assays did not evidence any cytotoxic or genotoxic effects of the PTHTRWA-bioengineered EVs.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Camundongos Endogâmicos BALB C , Camundongos Nus , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animais , Camundongos , Células A549 , Nanopartículas Magnéticas de Óxido de Ferro/química
10.
Toxicol In Vitro ; 99: 105850, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801838

RESUMO

Cytotoxic and genotoxic effects of novel mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium (Mg0.1-γ-Fe2O3(mPEG-silane)0.5) have been investigated on human adenocarcinomic alveolar basal epithelial (A549) and human normal bronchial epithelial (BEAS-2B) cells. In the studies several molecular and cellular targets addressing to cell membrane, cytoplasm organelles and nucleus components were served as toxicological endpoints. The as-synthesized nanoparticles were found to be stable in the cell culture media and were examined for different concentration and exposure times. No cytotoxicity of the tested nanoparticles was found although these nanoparticles slightly increased reactive oxygen species in both cell types studied. Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles did not produce any DNA strand breaks and oxidative DNA damages in A549 and BEAS-2B cells. Different concentration of Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles and different incubation time did not affect cell migration. The lung cancer cells' uptake of the nanoparticles was more effective than in normal lung cells. Altogether, the results evidence that mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium do not elucidate any deleterious effects on human normal and cancerous lung cells despite cellular uptake of these nanoparticles. Therefore, it seems reasonable to conclude that these novel biocompatible nanoparticles are promising candidates for further development towards medical applications.

11.
Nat Protoc ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755447

RESUMO

Making research data findable, accessible, interoperable and reusable (FAIR) is typically hampered by a lack of skills in technical aspects of data management by data generators and a lack of resources. We developed a Template Wizard for researchers to easily create templates suitable for consistently capturing data and metadata from their experiments. The templates are easy to use and enable the compilation of machine-readable metadata to accompany data generation and align them to existing community standards and databases, such as eNanoMapper, streamlining the adoption of the FAIR principles. These templates are citable objects and are available as online tools. The Template Wizard is designed to be user friendly and facilitates using and reusing existing templates for new projects or project extensions. The wizard is accompanied by an online template validator, which allows self-evaluation of the template (to ensure mapping to the data schema and machine readability of the captured data) and transformation by an open-source parser into machine-readable formats, compliant with the FAIR principles. The templates are based on extensive collective experience in nanosafety data collection and include over 60 harmonized data entry templates for physicochemical characterization and hazard assessment (cell viability, genotoxicity, environmental organism dose-response tests, omics), as well as exposure and release studies. The templates are generalizable across fields and have already been extended and adapted for microplastics and advanced materials research. The harmonized templates improve the reliability of interlaboratory comparisons, data reuse and meta-analyses and can facilitate the safety evaluation and regulation process for (nano) materials.

12.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770370

RESUMO

For the next-generation risk assessment (NGRA) of chemicals and nanomaterials, new approach methodologies (NAMs) are needed for hazard assessment in compliance with the 3R's to reduce, replace and refine animal experiments. This study aimed to establish and characterize an advanced respiratory model consisting of human epithelial bronchial BEAS-2B cells cultivated at the air-liquid interface (ALI), both as monocultures and in cocultures with human endothelial EA.hy926 cells. The performance of the bronchial models was compared to a commonly used alveolar model consisting of A549 in monoculture and in coculture with EA.hy926 cells. The cells were exposed at the ALI to nanosilver (NM-300K) in the VITROCELL® Cloud. After 24 h, cellular viability (alamarBlue assay), inflammatory response (enzyme-linked immunosorbent assay), DNA damage (enzyme-modified comet assay), and chromosomal damage (cytokinesis-block micronucleus assay) were measured. Cytotoxicity and genotoxicity induced by NM-300K were dependent on both the cell types and model, where BEAS-2B in monocultures had the highest sensitivity in terms of cell viability and DNA strand breaks. This study indicates that the four ALI lung models have different sensitivities to NM-300K exposure and brings important knowledge for the further development of advanced 3D respiratory in vitro models for the most reliable human hazard assessment based on NAMs.

13.
Bioelectrochemistry ; 153: 108467, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37244203

RESUMO

This study compares the performance and output of an electrochemical phospholipid membrane platform against respective in vitro cell-based toxicity testing methods using three toxicants of different biological action (chlorpromazine (CPZ), colchicine (COL) and methyl methanesulphonate (MMS)). Human cell lines from seven different tissues (lung, liver, kidney, placenta, intestine, immune system) were used to validate this physicochemical testing system. For the cell-based systems, the effective concentration at 50 % cell death (EC50) values are calculated. For the membrane sensor, a limit of detection (LoD) value was extracted as a quantitative parameter describing the minimum concentration of toxicant which significantly affects the structure of the phospholipid sensor membrane layer. LoD values were found to align well with the EC50 values when acute cell viability was used as an end-point and showed a similar toxicity ranking of the tested toxicants. Using the colony forming efficiency (CFE) or DNA damage as end-point, a different order of toxicity ranking was observed. The results of this study showed that the electrochemical membrane sensor generates a parameter relating to biomembrane damage, which is the predominant factor in decreasing cell viability when in vitro models are acutely exposed to toxicants. These results lead the way to using electrochemical membrane-based sensors for rapid relevant preliminary toxicity screens.


Assuntos
Fígado , Testes de Toxicidade , Humanos , Linhagem Celular , Testes de Toxicidade/métodos , Clorpromazina , Substâncias Perigosas , Fosfolipídeos
14.
Artigo em Inglês | MEDLINE | ID: mdl-36669817

RESUMO

As part of a large human biomonitoring study, we conducted occupational monitoring in a glass fibre factory in Slovakia. Shopfloor workers (n = 80), with a matched group of administrators in the same factory (n = 36), were monitored for exposure to glass fibres and to polycyclic aromatic hydrocarbons (PAHs). The impact of occupational exposure on chromosomal aberrations, DNA damage and DNA repair, immunomodulatory markers, and the role of nutritional and lifestyle factors, as well as the effect of polymorphisms in metabolic and DNA repair genes on genetic stability, were investigated. The (enzyme-modified) comet assay was employed to measure DNA strand breaks (SBs) and apurinic sites, oxidised and alkylated bases. Antioxidant status was estimated by resistance to H2O2-induced DNA damage. Base excision repair capacity was measured with an in vitro assay (based on the comet assay). Exposure of workers to fibres was low, but still was associated with higher levels of SBs, and SBs plus oxidised bases, and higher sensitivity to H2O2. Multivariate analysis showed that exposure increased the risk of high levels of SBs by 20%. DNA damage was influenced by antioxidant enzymes catalase and glutathione S-transferase (measured in blood). DNA repair capacity was inversely correlated with DNA damage and positively with antioxidant status. An inverse correlation was found between DNA base oxidation and the percentage of eosinophils (involved in the inflammatory response) in peripheral blood of both exposed and reference groups. Genotypes of XRCC1 variants rs3213245 and rs25487 significantly decreased the risk of high levels of base oxidation, to 0.50 (p = 0.001) and 0.59 (p = 0.001), respectively. Increases in DNA damage owing to glass fibre exposure were significant but modest, and no increases were seen in chromosome aberrations or micronuclei. However, it is of concern that even low levels of exposure to these fibres can cause significant genetic damage.


Assuntos
Antioxidantes , Exposição Ocupacional , Humanos , Monitoramento Biológico , Peróxido de Hidrogênio , Dano ao DNA , Reparo do DNA , Ensaio Cometa , Exposição Ocupacional/efeitos adversos , Aberrações Cromossômicas , DNA , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
15.
Front Toxicol ; 5: 1220998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492623

RESUMO

Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.

16.
Mutagenesis ; 27(6): 759-69, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22940646

RESUMO

Among nanomaterials, silver nanoparticles (AgNPs) have the broadest and most commercial applications due to their antibacterial properties, highlighting the need for exploring their potential toxicity and underlying mechanisms of action. Our main aim was to investigate whether AgNPs exert toxicity by inducing oxidative damage to DNA in human kidney HEK 293 cells. In addition, we tested whether this damage could be counteracted by plant extracts containing phytochemicals such as swertiamarin, mangiferin and homoorientin with high antioxidant abilities. We show that AgNPs (20 nm) are taken up by cells and localised in vacuoles and cytoplasm. Exposure to 1, 25 or 100 µg/ml AgNPs leads to a significant dose-dependent increase in oxidised DNA base lesions (8-oxo-7,8-dihydroguanine or 8-oxoG) detected by the comet assay after incubation of nucleoids with 8-oxoG DNA glycosylase. Oxidised DNA base lesions and strand breaks caused by AgNPs were diminished by aqueous and methanolic extracts from both haulm and flower of Gentiana asclepiadea.


Assuntos
Dano ao DNA/efeitos dos fármacos , Gentiana/química , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Prata/toxicidade , Antioxidantes/farmacologia , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Ensaio Cometa , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Células HEK293 , Humanos , Nanopartículas Metálicas/química , Metanol/metabolismo , Prata/química
17.
Front Toxicol ; 4: 981701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245792

RESUMO

The Alamar Blue (AB) assay is widely used to investigate cytotoxicity, cell proliferation and cellular metabolic activity within different fields of toxicology. The use of the assay with nanomaterials (NMs) entails specific aspects including the potential interference of NMs with the test. The procedure of the AB assay applied for testing NMs is described in detail and step-by-step, from NM preparation, cell exposure, inclusion of interference controls, to the analysis and interpretation of the results. Provided that the proper procedure is followed, and relevant controls are included, the AB assay is a reliable and high throughput test to evaluate the cytotoxicity/proliferation/metabolic response of cells exposed to NMs.

18.
Front Toxicol ; 4: 983316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157975

RESUMO

To cope with the high number of nanomaterials manufactured, it is essential to develop high-throughput methods for in vitro toxicity screening. At the same time, the issue with interference of the nanomaterial (NM) with the read-out or the reagent of the assay needs to be addressed to avoid biased results. Thus, validated label-free methods are urgently needed for hazard identification of NMs to avoid unintended adverse effects on human health. The colony forming efficiency (CFE) assay is a label- and interference-free method for quantification of cytotoxicity by cell survival and colony forming efficiency by CFE formation. The CFE has shown to be compatible with toxicity testing of NMs. Here we present an optimized protocol for a higher-throughput set up.

19.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35957046

RESUMO

Advanced in vitro models are needed to support next-generation risk assessment (NGRA), moving from hazard assessment based mainly on animal studies to the application of new alternative methods (NAMs). Advanced models must be tested for hazard assessment of nanomaterials (NMs). The aim of this study was to perform an interlaboratory trial across two laboratories to test the robustness of and optimize a 3D lung model of human epithelial A549 cells cultivated at the air-liquid interface (ALI). Potential change in sensitivity in hazard identification when adding complexity, going from monocultures to co- and tricultures, was tested by including human endothelial cells EA.hy926 and differentiated monocytes dTHP-1. All models were exposed to NM-300K in an aerosol exposure system (VITROCELL® cloud-chamber). Cyto- and genotoxicity were measured by AlamarBlue and comet assay. Cellular uptake was investigated with transmission electron microscopy. The models were characterized by confocal microscopy and barrier function tested. We demonstrated that this advanced lung model is applicable for hazard assessment of NMs. The results point to a change in sensitivity of the model by adding complexity and to the importance of detailed protocols for robustness and reproducibility of advanced in vitro models.

20.
Artigo em Inglês | MEDLINE | ID: mdl-36155144

RESUMO

The potential genotoxicity of titanium dioxide (TiO2) nanoparticles (NPs) is a conflictive topic because both positive and negative findings have been reported. To add clarity, we have carried out a study with two cell lines (V79-4 and A549) to evaluate the effects of TiO2 NPs (NM-101), with a diameter ranging from 15 to 60 nm, at concentrations 1-75 µg/cm2. Using two different dispersion procedures, cell uptake was determined by Transmission Electron Microscopy (TEM). Mutagenicity was evaluated using the Hprt gene mutation test, while genotoxicity was determined with the comet assay, detecting both DNA breaks and oxidized DNA bases (with formamidopyrimidine glycosylase - Fpg). Cell internalization, as determined by TEM, shows TiO2 NM-101 in cytoplasmic vesicles, as well as close to and inside the nucleus. Such internalization did not depend on the state of agglomeration, nor the dispersion used. In spite of such internalization, no cytotoxicity was detected in V79-4 cells (relative growth activity and plating efficiency assays) or in A549 cells (AlamarBlue assay) after exposure lasting for 24 h. However, a significant decrease in the relative growth activity was detected at longer exposure times (48 and 72 h) and at the highest concentration 75 µg/cm2. When the modified enzyme-linked alkaline comet assay was performed on A549 cells, although no significant induction of DNA damage was detected, a positive concentration-effects relationship was observed (Spearman's correlation = 0.9, p 0.0001). Furthermore, no significant increase of DNA oxidized purine bases was observed. When the frequency of Hprt gene mutants was determined in V79-4 cells, no increase was observed in the exposed cells, relative to the unexposed cultures. Our general conclusion is that, under our experimental conditions, TiO2 NM-101 exposure does not exert mutagenic effects despite the evidence of NP uptake by V79-4 cells.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ensaio Cometa , DNA , Dano ao DNA , Hipoxantina Fosforribosiltransferase/genética , Nanopartículas Metálicas/toxicidade , Testes de Mutagenicidade , Mutagênicos/toxicidade , Nanopartículas/toxicidade , Purinas , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA