Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(4): e202313892, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38012094

RESUMO

Embracing complexity in design, metallo-supramolecular self-assembly presents an opportunity for fabricating materials of economic significance. The array of accessible supramolecules is alluring, along with favourable energy requirements. Implementation is hampered by an inability to efficiently characterise complex mixtures. The stoichiometry, size, shape, guest binding properties and reactivity of individual components and combinations thereof are inherently challenging to resolve. A large combinatorial library of four transition metals (Fe, Cu, Ni and Zn), and six ß-diketonate ligands at different molar ratios and pH was robotically prepared and directly analysed over multiple timepoints with electrospray ionisation travelling wave ion mobility-mass spectrometry. The dataset was parsed for self-assembling activity without first attempting to structurally assign individual species. Self-assembling systems were readily categorised without manual data-handling, allowing efficient screening of self-assembly activity. This workflow clarifies solution phase supramolecular assembly processes without manual, bottom-up processing. The complex behaviour of the self-assembling systems was reduced to simpler qualities, which could be automatically processed.

2.
Dalton Trans ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352246

RESUMO

Here the monocation complexes of seven anti-cryptophanes are examined with high-resolution ion-mobility mass spectrometry. The relative size of the [cation + cryptophane]+ complexes were compared based on their measured mobilities and derived collisional cross sections. A paradoxical trend of structural contraction was observed for complexes of increasing cation size. Density functional theory confirmed encapsulation occurs for cation = Na+, K+, Rb+, Cs+ and NH4+. However, cation = Li+ preferred oxygen coordination at a linker over encapsulation within the cavity, leading to a slightly larger gas phase structure overall. Protonated cryptophanes yielded much larger collision cross sections via imploded cryptophane structures. Thus, competing physical effects led to the observed non-periodic size trend of the complexes. Trends in complexation from isothermal titration calorimetry and other condensed phase techniques were borne out by the gas phase studies. Further, predicted cavity sizes compared with the gas phase experimental findings reveal more about the encapsulation mechanisms themselves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA