RESUMO
The light-triggered, programmable rupture of cell-sized vesicles is described, with particular emphasis on self-assembled polymersome capsules. The mechanism involves a hypotonic osmotic imbalance created by the accumulation of photogenerated species inside the lumen, which cannot be compensated owing to the low water permeability of the membrane. This simple and versatile mechanism can be adapted to a wealth of hydrosoluble molecules, which are either able to generate reactive oxygen species or undergo photocleavage. Ultimately, in a multi-compartmentalized and cell-like system, the possibility to selectively burst polymersomes with high specificity and temporal precision and to consequently deliver small encapsulated vesicles (both polymersomes and liposomes) is demonstrated.
RESUMO
We report the first study dealing with the self-assembly of an α-amino acid derivative in perfluorocarbons. Rheology, microscopy, and spectroscopy studies reveal that the fluorous sodium l-prolinate derivative 1 self-assembles in perfluorocarbons to form a three-dimensional network of left-handed nano-helices resulting in solvent gelation. Singlet oxygen lifetime measured in a gel of perfluorodecalin is about 1000 times longer than in pure water.