Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 207(1): 21-28, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30978459

RESUMO

The birds and reptiles, collectively known as the sauropsids, can be subdivided phylogenetically into the archosaurs (birds, crocodiles), the testudines (turtles), the squamates (lizards, snakes) and the rhynchocephalia (tuatara). The structural framework of the epidermal appendages from the sauropsids, which include feathers, claws and scales, has previously been characterised by electron microscopy, infrared spectroscopy and X-ray diffraction analyses, as well as by studies of the amino acid sequences of the constituent ß-keratin proteins (also referred to as the corneous ß-proteins). An important omission in this work, however, was the lack of sequence and structural data relating to the epidermal appendages of the rhynchocephalia (tuatara), one of the two branches of the lepidosaurs. Considerable effort has gone into sequencing the tuatara genome and while this is not yet complete, there are now sufficient sequence data for conclusions to be drawn on the similarity of the ß-keratins from the tuatara to those of other members of the sauropsids. These results, together with a comparison of the X-ray diffraction pattern of tuatara claw with those from seagull feather and goanna claw, confirm that there is a common structural plan in the ß-keratins of all of the sauropsids, and not just those that comprise the archosaurs (birds and crocodiles), the testudines (turtles) and the squamates (lizards and snakes).


Assuntos
Evolução Biológica , Filogenia , Répteis/anatomia & histologia , beta-Queratinas/química , Animais , Epiderme/crescimento & desenvolvimento , Extremidades/anatomia & histologia , Plumas/química , Casco e Garras/química , Estrutura Molecular , Répteis/metabolismo
2.
Bioinformatics ; 30(12): 1791-2, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24574118

RESUMO

MOTIVATION: Detailed curation of published molecular data is essential for any model organism database. Community curation enables researchers to contribute data from their papers directly to databases, supplementing the activity of professional curators and improving coverage of a growing body of literature. We have developed Canto, a web-based tool that provides an intuitive curation interface for both curators and researchers, to support community curation in the fission yeast database, PomBase. Canto supports curation using OBO ontologies, and can be easily configured for use with any species. AVAILABILITY: Canto code and documentation are available under an Open Source license from http://curation.pombase.org/. Canto is a component of the Generic Model Organism Database (GMOD) project (http://www.gmod.org/).


Assuntos
Bases de Dados Factuais , Software , Ontologias Biológicas , Internet , Schizosaccharomyces
3.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38376816

RESUMO

PomBase (https://www.pombase.org), the model organism database (MOD) for fission yeast, was recently awarded Global Core Biodata Resource (GCBR) status by the Global Biodata Coalition (GBC; https://globalbiodata.org/) after a rigorous selection process. In this MOD review, we present PomBase's continuing growth and improvement over the last 2 years. We describe these improvements in the context of the qualitative GCBR indicators related to scientific quality, comprehensivity, accelerating science, user stories, and collaborations with other biodata resources. This review also showcases the depth of existing connections both within the biocuration ecosystem and between PomBase and its user community.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Bases de Dados Genéticas , Genoma Fúngico
4.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35380656

RESUMO

The fission yeast Schizosaccharomyces japonicus has recently emerged as a powerful system for studying the evolution of essential cellular processes, drawing on similarities as well as key differences between S. japonicus and the related, well-established model Schizosaccharomyces pombe. We have deployed the open-source, modular code and tools originally developed for PomBase, the S. pombe model organism database (MOD), to create JaponicusDB (www.japonicusdb.org), a new MOD dedicated to S. japonicus. By providing a central resource with ready access to a growing body of experimental data, ontology-based curation, seamless browsing and querying, and the ability to integrate new data with existing knowledge, JaponicusDB supports fission yeast biologists to a far greater extent than any other source of S. japonicus data. JaponicusDB thus enables S. japonicus researchers to realize the full potential of studying a newly emerging model species and illustrates the widely applicable power and utility of harnessing reusable PomBase code to build a comprehensive, community-maintainable repository of species-relevant knowledge.


Assuntos
Schizosaccharomyces , Bases de Dados Factuais , Schizosaccharomyces/genética
5.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100366

RESUMO

PomBase (www.pombase.org), the model organism database (MOD) for the fission yeast Schizosaccharomyces pombe, supports research within and beyond the S. pombe community by integrating and presenting genetic, molecular, and cell biological knowledge into intuitive displays and comprehensive data collections. With new content, novel query capabilities, and biologist-friendly data summaries and visualization, PomBase also drives innovation in the MOD community.


Assuntos
Schizosaccharomyces , Biologia , Bases de Dados Factuais , Schizosaccharomyces/genética
6.
Open Biol ; 10(9): 200149, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32875947

RESUMO

Biological processes are accomplished by the coordinated action of gene products. Gene products often participate in multiple processes, and can therefore be annotated to multiple Gene Ontology (GO) terms. Nevertheless, processes that are functionally, temporally and/or spatially distant may have few gene products in common, and co-annotation to unrelated processes probably reflects errors in literature curation, ontology structure or automated annotation pipelines. We have developed an annotation quality control workflow that uses rules based on mutually exclusive processes to detect annotation errors, based on and validated by case studies including the three we present here: fission yeast protein-coding gene annotations over time; annotations for cohesin complex subunits in human and model species; and annotations using a selected set of GO biological process terms in human and five model species. For each case study, we reviewed available GO annotations, identified pairs of biological processes which are unlikely to be correctly co-annotated to the same gene products (e.g. amino acid metabolism and cytokinesis), and traced erroneous annotations to their sources. To date we have generated 107 quality control rules, and corrected 289 manual annotations in eukaryotes and over 52 700 automatically propagated annotations across all taxa.


Assuntos
Biologia Computacional/métodos , Ontologia Genética , Anotação de Sequência Molecular , Bases de Dados Genéticas , Evolução Molecular , Genoma Fúngico , Genômica/métodos , Controle de Qualidade , Schizosaccharomyces/genética , Navegador , Fluxo de Trabalho
7.
Sci Adv ; 5(7): eaaw7006, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309157

RESUMO

Bluehead wrasses undergo dramatic, socially cued female-to-male sex change. We apply transcriptomic and methylome approaches in this wild coral reef fish to identify the primary trigger and subsequent molecular cascade of gonadal metamorphosis. Our data suggest that the environmental stimulus is exerted via the stress axis and that repression of the aromatase gene (encoding the enzyme converting androgens to estrogens) triggers a cascaded collapse of feminizing gene expression and identifies notable sex-specific gene neofunctionalization. Furthermore, sex change involves distinct epigenetic reprogramming and an intermediate state with altered epigenetic machinery expression akin to the early developmental cells of mammals. These findings reveal at a molecular level how a normally committed developmental process remains plastic and is reversed to completely alter organ structures.


Assuntos
Androgênios , Epigênese Genética/fisiologia , Estrogênios , Peixes , Processos de Determinação Sexual/fisiologia , Androgênios/genética , Androgênios/metabolismo , Animais , Estrogênios/genética , Estrogênios/metabolismo , Feminino , Peixes/genética , Peixes/metabolismo , Masculino
8.
Trends Biotechnol ; 32(8): 396-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24929579

RESUMO

The research communities studying microbial model organisms, such as Escherichia coli or Saccharomyces cerevisiae, are well served by model organism databases that have extensive functional annotation. However, this is not true of many industrial microbes that are used widely in biotechnology. In this Opinion piece, we use Pichia (Komagataella) pastoris to illustrate the limitations of the available annotation. We consider the resources that can be implemented in the short term both to improve Gene Ontology (GO) annotation coverage based on annotation transfer, and to establish curation pipelines for the literature corpus of this organism.


Assuntos
Biotecnologia/métodos , Proteínas Fúngicas/fisiologia , Microbiologia Industrial/métodos , Anotação de Sequência Molecular/métodos , Pichia/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pichia/genética , Pichia/metabolismo
9.
Bioinformatics ; 21(16): 3422-3, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15976072

RESUMO

The Artemis Comparison Tool (ACT) allows an interactive visualisation of comparisons between complete genome sequences and associated annotations. The comparison data can be generated with several different programs; BLASTN, TBLASTX or Mummer comparisons between genomic DNA sequences, or orthologue tables generated by reciprocal FASTA comparison between protein sets. It is possible to identify regions of similarity, insertions and rearrangements at any level from the whole genome to base-pair differences. ACT uses Artemis components to display the sequences and so inherits powerful searching and analysis tools. ACT is part of the Artemis distribution and is similarly open source, written in Java and can run on any Java enabled platform, including UNIX, Macintosh and Windows.


Assuntos
Mapeamento Cromossômico/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Interface Usuário-Computador , Algoritmos , Sequência de Bases , Gráficos por Computador , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA