Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fish Dis ; 46(6): 653-662, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36917496

RESUMO

Infection levels with the parasitic nematode Contracaecum osculatum in Eastern Baltic cod have increased in the last decades. Eastern Baltic cod is transport host for this parasite that has a high affinity for the liver of the fish. The liver is a highly vital organ and damage to the liver tissue can result in reduced functionality of the organ. Previous studies have revealed that cod with high infections loads reveal impaired physiological performance, reduced nutritional condition and show signs of having a liver disease. Yet, little is known about the pathological changes and inflammatory reactions of the cod liver related to the infections. In this study, we performed histological examinations on 30 Baltic cod livers caught in the eastern part of the Baltic Sea (length; 38 ± 0.9 cm, weight; 454 ± 34.8 gram) and three Sound cod livers (length; 63 ± 2.9 cm, weight; 3396 ± 300.2 gram) to categorize the degree of inflammation and its relation to pathological changes in infected cod livers. We further investigated how C. osculatum infection levels varied with intensity of inflammation and co-infections. We found that high infection loads with C. osculatum caused severe inflammation in the liver tissue of cod and reduced fat content of the hepatocytes. Conspicuous amounts of glycogen were found in the muscle and intestinal epithelial cells of the nematodes and parasitic co-infections occurred more frequently in the most heavily infected livers.


Assuntos
Ascaridoidea , Coinfecção , Doenças dos Peixes , Gadus morhua , Animais , Coinfecção/veterinária , Doenças dos Peixes/parasitologia , Fígado/parasitologia , Inflamação
2.
Proc Biol Sci ; 286(1898): 20182877, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30862289

RESUMO

Collapses and regime changes are pervasive in complex systems (such as marine ecosystems) governed by multiple stressors. The demise of Atlantic cod ( Gadus morhua) stocks constitutes a text book example of the consequences of overexploiting marine living resources, yet the drivers of these nearly synchronous collapses are still debated. Moreover, it is still unclear why rebuilding of collapsed fish stocks such as cod is often slow or absent. Here, we apply the stochastic cusp model, based on catastrophe theory, and show that collapse and recovery of cod stocks are potentially driven by the specific interaction between exploitation pressure and environmental drivers. Our statistical modelling study demonstrates that for most of the cod stocks, ocean warming could induce a nonlinear discontinuous relationship between fishing pressure and stock size, which would explain hysteresis in their response to reduced exploitation pressure. Our study suggests further that a continuing increase in ocean temperatures will probably limit productivity and hence future fishing opportunities for most cod stocks of the Atlantic Ocean. Moreover, our study contributes to the ongoing discussion on the importance of climate and fishing effects on commercially exploited fish stocks, highlighting the importance of considering discontinuous dynamics in holistic ecosystem-based management approaches, particularly under climate change.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Gadus morhua/fisiologia , Aquecimento Global , Temperatura , Animais , Oceano Atlântico , Modelos Biológicos , Dinâmica Populacional , Água do Mar/química , Processos Estocásticos
3.
Conserv Physiol ; 11(1): coad007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911046

RESUMO

Changes in physiological processes can reveal how individuals respond to environmental stressors. It can be difficult to link physiological responses to changes in vital rates such as growth, reproduction and survival. Here, bioenergetics modelling can aid in understanding non-intuitive outcomes from stressor combinations. Building on an established bioenergetics model, we examine the potential effects of parasite infection on growth rate and body condition. Parasites represent an overlooked biotic factor, despite their known effects on the physiology of the host organism. As a case study, we use the host-parasite system of Eastern Baltic cod (Gadus morhua) infected with the parasitic nematode Contraceacum osculatum. Eastern Baltic cod have during the past decade experienced increasing infection loads with C. osculatum that have been shown to lead to physiological changes. We hypothesized that infection with parasites affects cod growth negatively as previous studies reveal that the infections lead to reduced energy turnover, severe liver disease and reduced nutritional condition. To test this, we implemented new variables into the bioenergetics model representing the physiological changes in infected fish and parameterized these based on previous experimental data. We found that growth rate and body condition decreased with increased infection load. Highly infected cod reach a point of no return where their energy intake cannot maintain a surplus energy balance, which may eventually lead to induced mortality. In conclusion, parasite infections cannot be ignored when assessing drivers of fish stock dynamics.

4.
Conserv Physiol ; 8(1): coaa093, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995005

RESUMO

Establishing relationships between parasite infection and physiological condition of the host can be difficult and therefore are often neglected when describing factors causing population declines. Using the parasite-host system between the parasitic nematode Contracaecum osculatum and the Eastern Baltic cod Gadus morhua, we here shed new light on how parasite load may relate to the physiological condition of a transport host. The Eastern Baltic cod is in distress, with declining nutritional conditions, disappearance of the larger fish, high natural mortality and no signs of recovery of the population. During the latest decade, high infection levels with C. osculatum have been observed in fish in the central and southern parts of the Baltic Sea. We investigated the aerobic performance, nutritional condition, organ masses, and plasma and proximate body composition of wild naturally infected G. morhua in relation to infection density with C. osculatum. Fish with high infection densities of C. osculatum had (i) decreased nutritional condition, (ii) depressed energy turnover as evidenced by reduced standard metabolic rate, (iii) reduction in the digestive organ masses, and alongside (iv) changes in the plasma, body and liver composition, and fish energy source. The significantly reduced albumin to globulin ratio in highly infected G. morhua suggests that the fish suffer from a chronic liver disease. Furthermore, fish with high infection loads had the lowest Fulton's condition factor. Yet, it remains unknown whether our results steam from a direct effect of C. osculatum, or because G. morhua in an already compromised nutritional state are more susceptible towards the parasite. Nevertheless, impairment of the physiological condition can lead to reduced swimming performance, compromising foraging success while augmenting the risk of predation, potentially leading to an increase in the natural mortality of the host. We hence argue that fish-parasite interactions must not be neglected when implementing and refining strategies to rebuild deteriorating populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA