Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 195(8): 1637-44, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354748

RESUMO

Pseudomonas aeruginosa strains recovered from chronic pulmonary infections in cystic fibrosis patients are frequently mucoid. Such strains express elevated levels of alginate but reduced levels of the aggregative polysaccharide Psl; however, the mechanistic basis for this regulation is not completely understood. Elevated pslA expression was observed in an amrZ null mutant and in strains expressing a DNA-binding-deficient AmrZ. AmrZ is a transcription factor that positively regulates twitching motility and alginate synthesis, two phenotypes involved in P. aeruginosa biofilm development. AmrZ bound directly to the pslA promoter in vitro, and molecular analyses indicate that AmrZ represses psl expression by binding to a site overlapping the promoter. Altered expression of amrZ in nonmucoid strains impacted biofilm structure and architecture, as structured microcolonies were observed with low AmrZ production and flat biofilms with amrZ overexpression. These biofilm phenotypes correlated with Psl levels, since we observed elevated Psl production in amrZ mutants and lower Psl production in amrZ-overexpressing strains. These observations support the hypothesis that AmrZ is a multifunctional regulator mediating transition of P. aeruginosa biofilm infections from colonizing to chronic biofilms through repression of the psl operon while activating the algD operon.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Pseudomonas aeruginosa/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Alginatos/metabolismo , Proteínas de Bactérias/genética , Ensaio de Imunoadsorção Enzimática/métodos , Genótipo , Ácido Glucurônico/genética , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Immunoblotting , Mutação , Óperon/genética , Óperon/fisiologia , Polissacarídeos/genética , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
2.
Environ Microbiol ; 14(8): 1913-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22176658

RESUMO

Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl, that have been implicated in biofilm development. Non-mucoid strains can use either Pel or Psl as the primary matrix structural polysaccharide. In this study, we evaluated a range of clinical and environmental P.aeruginosa isolates for their dependence on Pel and Psl for biofilm development. Mutational analysis demonstrates that Psl plays an important role in surface attachment for most isolates. However, there was significant strain-to-strain variability in the contribution of Pel and Psl to mature biofilm structure. This analysis led us to propose four classes of strains based upon their Pel and Psl functional and expression profiles. Our data also suggest that Pel and Psl can serve redundant functions as structural scaffolds in mature biofilms. We propose that redundancy could help preserve the capacity to produce a biofilm when exopolysaccharide genes are subjected to mutation. To test this, we used PAO1, a common lab strain that primarily utilizes Psl in the matrix. As expected, a psl mutant strain initially produced a poor biofilm. After extended cultivation, we demonstrate that this strain acquired mutations that upregulated expression of the Pel polysaccharide, demonstrating the utility of having a redundant scaffold exopolysaccharide. Collectively, our studies revealed both unique and redundant roles for two distinct biofilm exopolysaccharides.


Assuntos
Biofilmes , Polissacarídeos Bacterianos/genética , Pseudomonas aeruginosa/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mutação , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Especificidade da Espécie
3.
J Bacteriol ; 192(12): 3001-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20348252

RESUMO

The extracytoplasmic function sigma factor AlgU of Pseudomonas aeruginosa is responsible for alginate overproduction, leading to mucoidy and chronic infections of cystic fibrosis patients. We investigated here the role of AlgU in the formation of nonmucoid biofilms. The algU mutant of P. aeruginosa PAO1 (PAOU) showed a dramatic impairment in biofilm formation under dynamic conditions. PAOU was defective both in cell attachment to glass and in development of robust, shear-resistant biofilms. This was explained by an impaired production of extracellular matrix, specifically of the exopolysaccharide Psl, as revealed by microscopy and enzyme-linked immunosorbent assay. Complementing the algU mutation with a plasmid-borne algU gene restored wild-type phenotypes. Compared with that in PAO1, expression of the psl operon was reduced in the PAOU strain, and the biofilm formation ability of this strain was partially restored by inducing the transcription of the psl operon. Furthermore, expression of the lectin-encoding lecA and lecB genes was reduced in the PAOU strain. In agreement with the requirement of LecB for type IV pilus biogenesis, PAOU displayed impaired twitching motility. Collectively, these genetic downregulation events explain the biofilm formation defect of the PAOU mutant. Promoter mapping indicated that AlgU is probably not directly responsible for transcription of the psl operon and the lec genes, but AlgU is involved in the expression of the ppyR gene, whose product was reported to positively control psl expression. Expressing the ppyR gene in PAOU partially restored the formation of robust biofilms.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/fisiologia , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Lectinas , Mutação , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/ultraestrutura , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Fator sigma/genética
4.
Curr Opin Microbiol ; 10(6): 644-8, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17981495

RESUMO

During the past decade, there has been a renewed interest in using Pseudomonas aeruginosa as a model system for biofilm development and pathogenesis. Since the biofilm matrix represents a crucial interface between the bacterium and the host or its environment, considerable effort has been expended to acquire a more complete understanding of the matrix composition. Here, we focus on recent developments regarding the roles of alginate, Psl, and Pel polysaccharides in the biofilm matrix.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Alginatos/metabolismo , Proteínas de Bactérias/genética , Matriz Extracelular/metabolismo , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA