Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Postepy Biochem ; 70(1): 1-3, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-39016221

RESUMO

Wonderful World of Nucleic Acids.


Assuntos
Ácidos Nucleicos , História do Século XX , História do Século XXI
2.
Postepy Biochem ; 70(1): 100-107, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-39016226

RESUMO

This essay is in memoriam of Professor Mieczyslaw Chorazy (1925 - 2021). Eminent Man, outstanding scientist, soldier of the Warsaw Uprising, moral authority for generations of fellow researchers and an exceptionally warm person. His character and life works are recalled here against the background of the times he lived in.


Assuntos
Bioquímica , História do Século XX , Polônia , História do Século XXI , Bioquímica/história , Humanos
3.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499386

RESUMO

The regulation of translation by RNA-induced silencing complexes (RISCs) composed of Argonaute proteins and micro-RNAs is well established; however, the mechanisms underlying specific cellular responses to miRNAs and how specific complexes arise are not completely clear. To explore these questions, we performed experiments with Renilla and firefly luciferase reporter genes transfected in a psiCHECK-2 plasmid into human HCT116 or Me45 cells, where only the Renilla gene contained sequences targeted by microRNAs (miRNAs) in the 3'UTR. The effects of targeting were miRNA-specific; miRNA-21-5p caused strong inhibition of translation, whereas miRNA-24-3p or Let-7 family caused no change or an increase in reporter Renilla luciferase synthesis. The mRNA-protein complexes formed by transcripts regulated by different miRNAs differed from each other and were different in different cell types, as shown by sucrose gradient centrifugation. Unexpectedly, the presence of miRNA targets on Renilla transcripts also affected the expression of the co-transfected but non-targeted firefly luciferase gene in both cell types. Renilla and firefly transcripts were found in the same sucrose gradient fractions and specific anti-miRNA oligoribonucleotides, which influenced the expression of the Renilla gene, and also influenced that of firefly gene. These results suggest that, in addition to targeted transcripts, miRNAs may also modulate the expression of non-targeted transcripts, and using the latter to normalize the results may cause bias. We discuss some hypothetical mechanisms which could explain the observed miRNA-induced effects.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Genes Reporter , Regiões 3' não Traduzidas , Complexo de Inativação Induzido por RNA/genética , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Sacarose
4.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199590

RESUMO

In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.


Assuntos
Antioxidantes/metabolismo , Homeostase/genética , MicroRNAs/genética , Estresse Oxidativo/genética , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Humanos , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Oxirredução , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
5.
BMC Genomics ; 20(1): 114, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30727966

RESUMO

BACKGROUND: Rapid changes in the expression of many messenger RNA (mRNA) species follow exposure of cells to ionizing radiation. One of the hypothetical mechanisms of this response may include microRNA (miRNA) regulation, since the amounts of miRNAs in cells also vary upon irradiation. To address this possibility, we designed experiments using cancer-derived cell lines transfected with luciferase reporter gene containing sequences targeted by different miRNA species in its 3'- untranslated region. We focus on the early time-course response (1 h past irradiation) to eliminate secondary mRNA expression waves. RESULTS: Experiments revealed that the irradiation-induced changes in the mRNA expression depend on the miRNAs which interact with mRNA. To identify the strongest interactions, we propose a mathematical model which predicts the mRNA fold expression changes, caused by perturbation of microRNA-mRNA interactions. Model was applied to experimental data including various cell lines, irradiation doses and observation times, both ours and literature-based. Comparison of modelled and experimental mRNA expression levels given miRNA level changes allows estimating how many and which miRNAs play a significant role in transcriptome response to stress conditions in different cell types. As an example, in the human melanoma cell line the comparison suggests that, globally, a major part of the irradiation-induced changes of mRNA expression can be explained by perturbed miRNA-mRNA interactions. A subset of about 30 out of a few hundred miRNAs expressed in these cells appears to account for the changes. These miRNAs play crucial roles in regulatory mechanisms observed after irradiation. In addition, these miRNAs have a higher average content of GC and a higher number of targeted transcripts, and many have been reported to play a role in the development of cancer. CONCLUSIONS: Our proposed mathematical modeling approach may be used to identify miRNAs which participate in responses of cells to ionizing radiation, and other stress factors such as extremes of temperature, exposure to toxins, and drugs.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Modelos Biológicos , Neoplasias/genética , RNA Mensageiro/metabolismo , Radiação Ionizante , Estresse Fisiológico , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Neoplasias/metabolismo , Neoplasias/fisiopatologia
6.
J Theor Biol ; 405: 94-103, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27216640

RESUMO

Living cells, like whole living organisms during evolution, communicate with their neighbors, interact with the environment, divide, change their phenotypes, and eventually die. The development of specific ways of communication (through signaling molecules and receptors) allows some cellular subpopulations to survive better, to coordinate their physiological status, and during embryonal development to create tissues and organs or in some conditions to become tumors. Populations of cells cultured in vitro interact similarly, also competing for space and nutrients and stimulating each other to better survive or to die. The results of these intercellular interactions of different types seem to be good examples of biological evolutionary games, and have been the subjects of simulations by the methods of evolutionary game theory where individual cells are treated as players. Here we present examples of intercellular contacts in a population of living human cancer HeLa cells cultured in vitro and propose an evolutionary game theory approach to model the development of such populations. We propose a new technique termed Mixed Spatial Evolutionary Games (MSEG) which are played on multiple lattices corresponding to the possible cellular phenotypes which gives the possibility of simulating and investigating the effects of heterogeneity at the cellular level in addition to the population level. Analyses performed with MSEG suggested different ways in which cellular populations develop in the case of cells communicating directly and through factors released to the environment.


Assuntos
Evolução Biológica , Teoria dos Jogos , Modelos Biológicos , Neoplasias/patologia , Comunicação Celular , Proliferação de Células , Células HeLa , Humanos , Fenótipo , Probabilidade , Fatores de Tempo
7.
Postepy Hig Med Dosw (Online) ; 70(0): 1005-1016, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27708205

RESUMO

Ago proteins are members of the highly specialized and conserved Argonaute family, primarily responsible for regulation of gene expression. As a part of RNA-induced silencing complexes (RISCs) Ago proteins are responsible for binding a short RNA and cleavage/inhibition of translation of target mRNAs. Phosphorylation may work as the switch between those two functions, but the role of magnesium ion concentration is also taken into consideration. Recent reports indicate that Ago proteins can interact with an mRNA and cause inhibition of translation without the participation of a short RNA. As key elements in RNA interference processes, Ago proteins are an important and intensively exploited area of research. Furthermore, these proteins are involved in the repair of DNA double-strand breaks by homologous recombination, modifications of chromatin, and alternative splicing. Their role in the cell cycle and senescence is also being studied. In addition, Ago expression is tissue-specific, which potentially may be used for diagnostic purposes. Understanding the mechanisms of Ago functioning is therefore crucial for understanding many cellular processes. The following article presents a detailed description of the Ago proteins including their post-translational modifications, recent data and hypotheses concerning their interactions with short RNAs and mRNAs as well as the mechanisms of siRNA/miRNA sorting into individual members of the Ago subfamily, and their role in eukaryotic cells. The latest classification of Ago proteins within the Argonaute family based on evolutionary studies and their possible interactions with DNA are also described.


Assuntos
Proteínas Argonautas/metabolismo , Eucariotos/metabolismo , Processamento Alternativo , Proteínas Argonautas/classificação , Proteínas Argonautas/genética , Proteínas Argonautas/fisiologia , Cromatina/metabolismo , Eucariotos/genética , Humanos , MicroRNAs/metabolismo , Conformação Molecular , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Reparo de DNA por Recombinação
8.
Nucleic Acids Res ; 40(19): 9417-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22848103

RESUMO

The accessibility of DNA in chromatin is an essential factor in regulating its activities. We studied the accessibility of the DNA in a ∼170 kb circular minichromosome to DNA-cleaving reagents using pulsed-field gel electrophoresis and fibre-fluorescence in situ hybridization on combed DNA molecules. Only one of several potential sites in the minichromosome DNA was accessible to restriction enzymes in permeabilized cells, and in growing cells only a single site at an essentially random position was cut by poisoned topoisomerase II, neocarzinostatin and γ-radiation, which have multiple potential cleavage sites; further sites were then inaccessible in the linearized minichromosomes. Sequential exposure to combinations of these reagents also resulted in cleavage at only a single site. Minichromosome DNA containing single-strand breaks created by a nicking endonuclease to relax any unconstrained superhelicity was also cut at only a single position by a restriction enzyme. Further sites became accessible after ≥95% of histones H2A, H2B and H1, and most non-histone proteins were extracted. These observations suggest that a global rearrangement of the three-dimensional packing and interactions of nucleosomes occurs when a circular minichromosome is linearized and results in its DNA becoming inaccessible to probes.


Assuntos
Cromatina/química , Clivagem do DNA , DNA Circular/química , Linhagem Celular , Cromossomos/química , DNA/química , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Enzimas de Restrição do DNA , Proteínas de Ligação a DNA/análise , Humanos , Indicadores e Reagentes
9.
Epigenomes ; 8(2)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38804367

RESUMO

In living cells, some reactions can be conducted by more than one enzyme and sometimes it is difficult to establish which enzyme is responsible. Such is the case with proteins from the TET family, capable of converting 5-methyl-2'-deoxycytidine (5-mdC) in DNA to 5-(hydroxymethyl)-2'-deoxycytidine (5-hmdC) and further to 5-formyl-2'-deoxycytidine (5-fdC) and 5-carboxy-2'-deoxycytidine (5-cadC). The estimation of the efficiency of particular TETs in particular oxidative reactions and different cell types is important but experimentally difficult. Here, we propose an approach with mathematical modeling in which methylation and known deoxycytidine modification pathways are presented by 343 possible model versions with assumed different combinations of TET1, 2, and 3 activities in different pathways. Model parameters were calculated on the basis of 5-mdC, 5-hmdC, 5-fdC, 5-cadC, and 5-hmdU levels experimentally assessed in five human cultured cell lines and previously published. Selection of the model versions that give in simulations the best average fit to experimental data suggested that not all TET proteins participate in all modification reactions and that TET3 activity may be especially important in the reaction of 5-fdC removal.

10.
Mutat Res ; 755(1): 42-8, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23669291

RESUMO

Polymorphism of genes coding for proteins which participate in DNA repair may predispose to or protect against development of cancer. Here we studied how common polymorphisms of the genes XPD (Asp312Asn and Lys751Gln), APE1 (Asp148Glu), XRCC1 (Arg399Gln), and NBS1 (Gln185Glu) influence DNA repair and other responses after X-irradiation of lymphocytes from colon carcinoma patients. Genotypes with polymorphic Asp148Glu APE1 and Asp312Asn XPD showed a significantly higher level of DNA incisions immediately after irradiation (p=0.049 and p=0.047 respectively) and Asp312Asn XPD showed a significantly increased capacity to repair of DNA strand breaks as measured 180min after irradiation by comet assays (p=0.004). In contrast, it was the wild type XRCC1 genotype which was associated with a lower level of DNA breaks after irradiation (p=0.014, at 180min after irradiation) and polymorphism of NBS1 did not correlate with any changes in DNA breaks or repair capacity. To confirm the influence of XPD polymorphism on repair, we established stably-transfected HCT116 (colon carcinoma) cells which over-expressed the wild-type or variant XPD protein. Cells over-expressing Asp312Asn XPD showed a higher level of DNA breaks shortly after irradiation and more efficient repair than cells over-expressing the wild-type gene XPD312Asp, and an earlier inhibition of cell cycle transit but faster recovery from this inhibition. Polymorphisms in DNA repair genes therefore influence not only DNA repair capacity but also cell proliferation, and may serve as markers of individual repair capacity and susceptibility to environmental and occupational carcinogens.


Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/patologia , Dano ao DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/genética , Linfócitos/metabolismo , Proteínas Nucleares/genética , Polimorfismo Genético/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/fisiologia , Apoptose/efeitos da radiação , Western Blotting , Ciclo Celular/fisiologia , Ciclo Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Ensaio Cometa , DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Feminino , Citometria de Fluxo , Predisposição Genética para Doença , Genótipo , Humanos , Linfócitos/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais Cultivadas , Raios X , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
11.
Sensors (Basel) ; 14(1): 532-48, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24385030

RESUMO

High density oligonucleotide microarrays present a big challenge for statistical data processing methods which aim to separate changes induced by experimental factors from those caused by artifacts and measurement inaccuracies. Despite huge advances in the field of microarray probe design methods, the signal variation between probes that target a single transcript is substantially larger than their between-replicate array variability, suggesting a large influence of various probe-specific effects that introduce bias to the data. In this work we present the influence of probe-related design variations on the expression intensities of individual probes, focusing on five potential sources of high probe signal variance: the GC composition of the probe, the distance between individual probe target sites, G-quadruplex formation in the probe sequence, the occurrence of sequence motifs complementary to the oligo(dT) primer, and the specificity of unrecognized alternative splicing probeset assignment. By focusing on two high quality microarray datasets based on two distinct array designs we show the extent of variance between probes that target a specific transcript providing guidelines for the future design of microarrays and data processing methods.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Composição de Bases/genética
12.
Mutat Res ; 731(1-2): 117-24, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22210495

RESUMO

The radiation-induced bystander effect is a well-established phenomenon which results in damage in non-irradiated cells in response to signaling from irradiated cells. Since communication between irradiated and bystander cells could be reciprocal, we examined the mutual bystander response between irradiated cells and co-cultured with them non-irradiated recipients. Using a transwell culture system, irradiated human melanoma (Me45) cells were co-cultured with non-irradiated Me45 cells or normal human dermal fibroblasts (NHDF) and vice versa. The frequency of micronuclei and of apoptosis, ROS level, and mitochondrial membrane potential were used as the endpoints. Irradiated Me45 and NHDF cells induced conventional bystander effects detected as modest increases of the frequency of micronuclei and apoptosis in both recipient neighbors; the increase of apoptosis was especially high in NHDF cells co-cultured with irradiated Me45 cells. However, the frequencies of micronuclei and apoptosis in irradiated Me45 cells co-cultured with NHDF cells were significantly reduced in comparison with those cultured alone. This protective effect was not observed when irradiated melanomas were co-cultured with non-irradiated cells of the same line, or when irradiated NHDF fibroblasts were co-cultured with bystander melanomas. The increase of micronuclei and apoptosis in irradiated Me45 cells was paralleled by an increase in the level of intracellular reactive oxygen species (ROS), which was reduced significantly when they were co-cultured for 24h with NHDF cells. A small but significant elevation of ROS level in NHDF cells shortly after irradiation was also reduced by co-culture with non-irradiated NHDF cells. We propose that in response to signals from irradiated cells, non-irradiated NHDF cells trigger rescue signals, whose nature remains to be elucidated, which modify the redox status in irradiated cells. This inverse bystander effect may potentially have implications in clinical radiotherapy.


Assuntos
Apoptose/efeitos da radiação , Efeito Espectador/fisiologia , Fibroblastos/fisiologia , Melanoma/radioterapia , Espécies Reativas de Oxigênio/metabolismo , Comunicação Celular/efeitos da radiação , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Potencial da Membrana Mitocondrial/efeitos da radiação , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Transdução de Sinais
13.
Int J Radiat Biol ; 98(3): 479-488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030053

RESUMO

PURPOSE: Exposure of living cells to ionizing radiation has different consequences, depending on the dose and cell type. Changes in gene expression at the level of transcription and translation, including those regulated by microRNAs (miRNAs), play a role in the intrinsic radiosensitivity of different cells and define their fate, survival or death. The aim of our work was to examine how ionizing radiation may influence the expression of genes regulated by different miRNAs and miRNA biogenesis. MATERIALS AND METHODS: The work was performed on cultured human melanoma Me45 cells, transiently transfected with plasmids containing Renilla luciferase reporter gene targeted by miRNAs Let-7, miR-21 or miR-24. The levels of reporter mRNAs and mRNAs coding for proteins participating in miRNA biogenesis were assayed at different time points in irradiated and non-irradiated cells using RT-qPCR, and reporter protein by luciferase activity assays. MiRNA-targeted motifs in mRNAs coding for proteins engaged in miRNA biogenesis were extracted from the miRTarBase database. RESULTS: Messenger RNA and protein levels of transfected luciferase genes fluctuated in time in patterns that depended on the type of miRNA regulation and changed upon irradiation of the cells. The average levels of reporter mRNAs were higher in irradiated cells, whereas the levels of proteins changed in either direction. Radiation also influenced the levels of miRNAs and the expression of genes engaged in their biogenesis suggesting that the changes in gene expression following ionizing radiation result mainly from these changes in expression of genes regulating miRNA biogenesis and the influence of miRNA on mRNA translation. CONCLUSIONS: Currently, the responses of cells to ionizing radiation are mainly ascribed to changes in their redox conditions and increased intracellular levels of ROS, but the experiments described here suggest that a further important factor is modulation of translation through changes in biogenesis and levels of miRNAs.


Assuntos
MicroRNAs , Humanos , Luciferases , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tolerância a Radiação/genética , Radiação Ionizante
14.
DNA Repair (Amst) ; 8(6): 732-8, 2009 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-19272842

RESUMO

Unirradiated cells which neighbor cells exposed to ionizing radiation (IR) show responses termed bystander effects, including DNA damage, chromosomal instability, mutation, and apoptosis. We used genome-wide microarrays to compare the change in transcript profiles in Me45 (human melanoma) cells grown in culture medium from irradiated cells (irradiation conditioned medium, ICM) with those which occurred after IR, sampling after more than one division cycle to detect long-term changes which could be relevant in radiotherapy. Transcripts of >10,000 genes showed an increased or decreased level in both conditions using the criterion of a >+/-10% change, and >85% of these were common to growth in ICM and after IR. When these genes were grouped into metabolic pathways according to the Kyoto Encyclopedia of Genes and Genomes (KEGG), significant differences (p<0.01) were seen between the numbers of up- and down-regulated transcripts in certain groups after both ICM and IR, particularly in the groups neuroactive ligand-receptor interactions, oxidative phosphorylation, cytokine-cytokine receptor interactions, proteasomes, and ribosomes. Quantitative RT-PCR assays of transcripts of selected genes in these pathways confirmed the similar effects of growth in ICM and IR. We conclude that factors transmitted from irradiated cells can influence transcript levels in bystander cells, and that these changes persist for more than one cell cycle consistent with the long-term transmissible effects seen in progeny cells, revealing new facets of the IR-induced bystander effect.


Assuntos
Biomarcadores Tumorais/genética , Efeito Espectador , Meios de Cultivo Condicionados/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Melanoma/genética , Raios X , Biomarcadores Tumorais/metabolismo , Humanos , Melanoma/radioterapia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
15.
Bioorg Med Chem ; 18(7): 2664-71, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20303768

RESUMO

A group of styrylazanaphthalenes and azanaphthalenediones were synthesized and tested for their anti-proliferative activity. Most of the compounds were obtained with the use of microwave-assisted synthesis. The lipophilicity of the compounds was measured by RP-HPLC and their anti-proliferative activity was assayed against the human SK-N-MC neuroepithelioma and HCT116 human colon carcinoma cell lines. Active compounds were also tested in clonogenity and comet assays. Several quinazolinone and styrylquinazoline analogues were found to have markedly greater anti-proliferative activity than desferoxamine and cis-platin.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Naftalenos/síntese química , Naftalenos/farmacologia , Naftoquinonas/síntese química , Naftoquinonas/farmacologia , Estirenos/síntese química , Estirenos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Corantes , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipídeos/química , Solubilidade , Sais de Tetrazólio , Tiazóis , Ensaio Tumoral de Célula-Tronco
16.
Antioxidants (Basel) ; 9(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756515

RESUMO

Superoxide radicals, together with nitric oxide (NO), determine the oxidative status of cells, which use different pathways to control their levels in response to stressing conditions. Using gene expression data available in the Cancer Cell Line Encyclopedia and microarray results, we compared the expression of genes engaged in pathways controlling reactive oxygen species and NO production, neutralization, and changes in response to the exposure of cells to ionizing radiation (IR) in human cancer cell lines originating from different tissues. The expression of NADPH oxidases and NO synthases that participate in superoxide radical and NO production was low in all cell types. Superoxide dismutase, glutathione peroxidase, thioredoxin, and peroxiredoxins participating in radical neutralization showed high expression in nearly all cell types. Some enzymes that may indirectly influence superoxide radical and NO levels showed tissue-specific expression and differences in response to IR. Using fluorescence microscopy and specific dyes, we followed the levels and the distribution of superoxide and NO radicals in living melanoma cells at different times after exposure to IR. Directly after irradiation, we observed an increase of superoxide radicals and NO coexistent in the same subcellular locations, suggesting a switch of NO synthase to the production of superoxide radicals.

17.
Mutat Res ; 679(1-2): 33-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19660575

RESUMO

The aim of this pilot study was to assess whether a compound of the beta-carbonyl-1,4-dihydropyridine series (AV-153 or sodium 3,5-bis-ethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate), which has high efficiency in stimulating DNA repair, can simultaneously modulate apoptosis in human cells. Peripheral blood lymphocytes of healthy donors were used in this study. DNA strand-break rejoining was assessed with the alkaline comet assay after a 3-h incubation of lymphocytes in the presence of a wide range of concentrations of AV-153 (10(-10)-10(-5) M). Apoptotic and micronucleated (MN) cells were scored in phytohaemagglutinin-stimulated lymphocytes after a 72-h incubation with AV-153, using the standard cytokinesis-blocked micronucleus test. The study revealed dual effects of AV-153 on cellular defense systems against endogenously generated DNA damage: the compound per se simultaneously reduces DNA strand breaks and stimulates apoptosis, with a maximal efficiency of 76% and 42%, respectively; in contrast, after genotoxic stress (2 Gy of gamma-radiation) AV-153 reduces DNA strand breaks, the number of MN cells and apoptotic cells in a similar dose-dependent manner. A maximal efficiency of 67% was found for reduction of DNA strand breaks, while for MN cells and apoptotic cells the efficiencies were, respectively, 47% and 44%. While limited in number, these preliminary studies show the direct correlation between the efficiency of AV-153 in reduction of radiation-induced DNA breaks and MN cells on one side, and in reduction of apoptosis on the other. It suggests that the major target of the compound's action on genotoxic stress is DNA repair, followed by reduction of the number of damaged cells entering apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Di-Hidropiridinas/farmacologia , Adulto , Ensaio Cometa , Dano ao DNA/efeitos da radiação , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Niacina/análogos & derivados
18.
Postepy Hig Med Dosw (Online) ; 63: 340-50, 2009 Jul 20.
Artigo em Polonês | MEDLINE | ID: mdl-19644150

RESUMO

Aging, significant impairment of the oxidation/reduction balance, infection, and inflammation are recognized risk factors of benign hyperplasia and prostate cancer. Chronic symptomatic and asymptomatic prostate inflammatory processes generate significantly elevated levels of reactive oxygen and nitrogen species, and halogenated compounds. Prostate cancer patients showed significantly higher lipid peroxidation and lower antioxidant levels in peripheral blood than healthy controls, whereas patients with prostate hyperplasia did not show such symptoms. Oxidative/nitrosative/halogenative stress causes DNA modifications leading to genome instability that may initiate carcinogenesis; however, it was shown that oxidative damage alone is not sufficient to initiate this process. Peroxidation products induced by reactive oxygen and nitrogen species seem to take part in epigenetic mechanisms regulating genome activity. One of the most common changes occurring in more than 90% of all analyzed prostate cancers is the silencing of GSTP1 gene activity. The gene encodes glutathione transferase, an enzyme participating in detoxification processes. Prostate hyperplasia is often accompanied by chronic inflammation and such a relationship was not observed in prostate cancer. The participation of infection and inflammation in the development of hyperplasia is unquestionable and these factors probably also take part in initiating the early stages of prostate carcinogenesis. Thus it seems that therapeutic strategies that prevent genome oxidative damage in situations involving oxidative/nitrosative/halogenative stress, i.e. use of antioxidants, plant steroids, antibiotics, and non-steroidal anti-inflammatory drugs, could help prevent carcinogenesis.


Assuntos
Glutationa S-Transferase pi/metabolismo , Estresse Oxidativo , Hiperplasia Prostática/fisiopatologia , Neoplasias da Próstata/fisiopatologia , Envelhecimento , Humanos , Peroxidação de Lipídeos , Masculino , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco
19.
Postepy Hig Med Dosw (Online) ; 63: 377-88, 2009 Aug 18.
Artigo em Polonês | MEDLINE | ID: mdl-19724078

RESUMO

It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a potentially harmful or a useful event in radiotherapy. The elevation of damage to tumor cells not directly hit by radiation or the initiation of tumor cell differentiation may increase the therapeutic ratio. If, however, molecular species secreted by irradiated tumor cells in vivo damage neighboring normal cells (epithelial and endothelial cells, fibroblasts, or lymphocytes), the bystander effect would be harmful and could lead to increased side effects in normal tissue. This is especially important in modern radiotherapy, as 3D conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) are aimed at diminishing the radiation dose in normal tissues. Recent in vivo studies on animals indicate that bystander effects may appear in organs and tissues remote from the irradiated field and the extension of tissue damage seems to be tissue-type dependent. However, recent experimental results indicate that non-irradiated cells that are neighbors of irradiated cells may diminish radiation damage in the radiation-focused cells. Less is known about the bystander effect during fractionated irradiation. Thus the clinical implications of the bystander effect and its possible modification for radiotherapeutic usefulness is still under debate.


Assuntos
Apoptose/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Animais , Efeito Espectador , Humanos , Radiação Ionizante , Transdução de Sinais
20.
PLoS One ; 14(1): e0205215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682016

RESUMO

Ultraviolet A (UVA) radiation is harmful for living organisms but in low doses may stimulate cell proliferation. Our aim was to examine the relationships between exposure to different low UVA doses, cellular proliferation, and changes in cellular reactive oxygen species levels. In human colon cancer (HCT116) and melanoma (Me45) cells exposed to UVA doses comparable to environmental, the highest doses (30-50 kJ/m2) reduced clonogenic potential but some lower doses (1 and 10 kJ/m2) induced proliferation. This effect was cell type and dose specific. In both cell lines the levels of reactive oxygen species and nitric oxide fluctuated with dynamics which were influenced differently by UVA; in Me45 cells decreased proliferation accompanied the changes in the dynamics of H2O2 while in HCT116 cells those of superoxide. Genes coding for proteins engaged in redox systems were expressed differently in each cell line; transcripts for thioredoxin, peroxiredoxin and glutathione peroxidase showed higher expression in HCT116 cells whereas those for glutathione transferases and copper chaperone were more abundant in Me45 cells. We conclude that these two cell types utilize different pathways for regulating their redox status. Many mechanisms engaged in maintaining cellular redox balance have been described. Here we show that the different cellular responses to a stimulus such as a specific dose of UVA may be consequences of the use of different redox control pathways. Assays of superoxide and hydrogen peroxide level changes after exposure to UVA may clarify mechanisms of cellular redox regulation and help in understanding responses to stressing factors.


Assuntos
Proliferação de Células/efeitos da radiação , Oxirredução/efeitos da radiação , Raios Ultravioleta , Linhagem Celular Tumoral , Ensaio de Unidades Formadoras de Colônias/métodos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Peróxido de Hidrogênio/metabolismo , Redes e Vias Metabólicas/efeitos da radiação , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA