RESUMO
BACKGROUND AND AIMS: Chemotherapy-induced peripheral neurotoxicity (CIPN), with paraesthesia, numbness, dysesthesia and neuropathic pain ranks among the most common dose-limiting toxicity of several widely used anticancer drugs. Recent studies revealed the microvascular angiogenesis as a new important actor, beside peripheral neurons, in the neurotoxicity and neuropathic pain development and chronicisation. The aim of this work is to elucidate the role of vascular alterations in CIPN. METHODS: We evaluated the severity of CIPN with neurophysiological, behavioural and neuropathological analysis together with the microvascular network in central and peripheral nervous systems of rats in order to correlate the features of the CIPN and the vascular abnormalities. The vascular network was quantitatively evaluated through synchrotron radiation-based X-ray phase-contrast micro-tomography imaging, measuring four specific parameters: vascular density, vessel diameter, vessel tortuosity and branching. RESULTS: Rats exposed to paclitaxel and affected by a severe painful sensory axonopathy showed an increased vascular density (putative sprouting angiogenesis) in the crucial districts of the central (somatosensory cortex and lumbar spinal cord) and peripheral nervous system (lumbar dorsal root ganglia). In addition, the complexity of the vascular network and the size of neo-formed vessels were significantly decreased in specific regions. On the other hand, less significant changes were observed in rats exposed to cisplatin, affected by a painless peripheral neuropathy, suggesting a specific involvement of neo-angiogenesis in the development of severe neurotoxicity and neuropathic pain. INTERPRETATIONS: These new ground-breaking results can shed light on new pathogenetic mechanisms and potential novel therapeutic approaches for painful-CIPN.
RESUMO
BACKGROUND: Histopathological analysis represents the gold standard in clinical practice for diagnosing skin neoplasms. While the current diagnostic workflow has specialized in producing robust and accurate results, interpreting tissue architecture and malignant cellular morphology correctly remains one of the greatest challenges for pathologists. This paper aims to explore the prospect of applying x-ray virtual histology to human skin tumor excisions and correlating it with the histological validation. MATERIALS AND METHODS: Seven skin biopsies containing intriguing melanoma types and pigmented skin lesions were scanned using x-ray Computed micro-Tomography (µCT) and then sectioned for conventional histology assessment. RESULTS: The tissue microarchitecture reconstructed by µCT offers detailed insights into diagnosing the malignancy or benignity of the skin lesions. Three-dimensional reconstruction via x-ray virtual histology reveals infiltrative patterns in basal cell carcinoma and evaluated invasiveness in melanoma. The technology enables the identification of pagetoid distributions of neoplastic cells and the assessment of melanoma depth in three dimensions. CONCLUSION: Although the proposed approach is not intended to replace conventional histology, the non-destructive nature of the sample and the clarity provided by virtual inspection demonstrate the promising impact of µCT as a valid support method prior to conventional histological sectioning. Indeed, µCT images can suggest the optimal sectioning position before using a microtome, as is commonly performed in histological practice. Moreover, the three-dimensional nature of the proposed approach paves the way for a more accurate assessment of significant prognostic factors in melanoma, such as Breslow thickness, by considering the whole micro-volume rather than a two-dimensional observation.
Assuntos
Carcinoma Basocelular , Melanoma , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Melanoma/diagnóstico por imagem , Melanoma/patologia , Carcinoma Basocelular/diagnóstico por imagem , Carcinoma Basocelular/patologia , Microtomografia por Raio-X/métodos , Imageamento Tridimensional/métodos , Biópsia , Pele/diagnóstico por imagem , Pele/patologiaRESUMO
This work introduces a novel setup for computed tomography of heavy and bulky specimens at the SYRMEP beamline of the Italian synchrotron Elettra. All the key features of the setup are described and the first application to off-center computed tomography scanning of a human chest phantom (approximately 45â kg) as well as the first results for vertical helical acquisitions are discussed.
Assuntos
Síncrotrons , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Imagens de FantasmasRESUMO
Pulmonary fibrosis (PF) is a severe and progressive condition in which the lung becomes scarred over time resulting in pulmonary function impairment. Classical histopathology remains an important tool for micro-structural tissue assessment in the diagnosis of PF. A novel workflow based on spatial correlated propagation-based phase-contrast micro computed tomography (PBI-microCT), atomic force microscopy (AFM) and histopathology was developed and applied to two different preclinical mouse models of PF - the commonly used and well characterized Bleomycin-induced PF and a novel mouse model for progressive PF caused by conditional Nedd4-2 KO. The aim was to integrate structural and mechanical features from hallmarks of fibrotic lung tissue remodeling. PBI-microCT was used to assess structural alteration in whole fixed and paraffin embedded lungs, allowing for identification of fibrotic foci within the 3D context of the entire organ and facilitating targeted microtome sectioning of planes of interest for subsequent histopathology. Subsequently, these sections of interest were subjected to AFM to assess changes in the local tissue stiffness of previously identified structures of interest. 3D whole organ analysis showed clear morphological differences in 3D tissue porosity between transient and progressive PF and control lungs. By integrating the results obtained from targeted AFM analysis, it was possible to discriminate between the Bleomycin model and the novel conditional Nedd4-2 KO model using agglomerative cluster analysis. As our workflow for 3D spatial correlation of PBI, targeted histopathology and subsequent AFM is tailored around the standard procedure of formalin-fixed paraffin-embedded (FFPE) tissue specimens, it may be a powerful tool for the comprehensive tissue assessment beyond the scope of PF and preclinical research.
Assuntos
Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/patologia , Microtomografia por Raio-X/métodos , Microscopia de Força Atômica , Pulmão/anatomia & histologia , BleomicinaRESUMO
Hydroxyapatite is one of the materials of choice for tissue engineering bone scaffolds manufacturing. Vat photopolymerization (VPP) is a promising Additive Manufacturing (AM) technology capable of producing scaffolds with high resolution micro-architecture and complex shapes. However, mechanical reliability of ceramic scaffolds can be achieved if a high fidelity printing process is obtained and if knowledge of the intrinsic mechanical properties of the constituent material is available. As the hydroxyapatite (HAP) obtained from VPP is subjected to a sintering process, the mechanical properties of the material should be assessed with specific reference to the process parameters (e.g. sintering temperature) and to the specific characteristic size of the microscopic features in the scaffolds. In order to tackle this challenge the HAP solid matrix of the scaffold was mimicked in the form of miniaturized samples suitable for ad hoc mechanical characterization, which is an unprecedented approach. To this purpose small scale HAP samples, having a simple geometry and size similar to that of the scaffolds, were produced through VPP. The samples were subjected to geometric characterization and to mechanical laboratory tests. Confocal laser scanning and Computed micro-Tomography (micro-CT) were used for geometric characterization; while, micro-bending and nanoindentation were used for mechanical testing. Micro-CT analyses have shown a highly dense material with negligible intrinsic micro-porosity. The imaging process allowed quantifying the variation of geometry with respect to the nominal size showing high accuracy of the printing process and identifying printing defects on one specific sample type, depending on the printing direction. The mechanical tests have shown that the VPP produces HAP with an elastic modulus as high as approximately 100GPa and flexural strength of approximately 100MPa. The results of this study have shown that vat photopolymerization is a promising technology capable of producing high quality HAP with reliable geometric fidelity.
Assuntos
Durapatita , Impressão Tridimensional , Reprodutibilidade dos Testes , Alicerces Teciduais , Engenharia Tecidual/métodos , PorosidadeRESUMO
In this work, polyvinylidene fluoride (PVDF) aerogels with a tailorable phase composition were prepared by following the crystallization-induced gelation principle. A series of PVDF wet gels (5 to 12 wt.%) were prepared from either PVDF−DMF solutions or a mixture of DMF and ethanol as non-solvent. The effects of the non-solvent concentration on the crystalline composition of the PVDF aerogels were thoroughly investigated. It was found that the nucleating role of ethanol can be adjusted to produce low-density PVDF aerogels, whereas the changes in composition by the addition of small amounts of water to the solution promote the stabilization of the valuable ß and γ phases. These phases of the aerogels were monitored by FTIR and Raman spectroscopies. Furthermore, the crystallization process was followed by in-time and in situ ATR−FTIR spectroscopy. The obtained aerogels displayed specific surface areas > 150 m2 g−1, with variable particle morphologies that are dependent on the non-solvent composition, as observed by using SEM and Synchrotron Radiation Computed micro-Tomography (SR-µCT).