Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(W1): W170-W176, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32442297

RESUMO

Structural variants (SVs) that alter DNA sequence emerge as a driving force involved in the reorganisation of DNA spatial folding, thus affecting gene transcription. In this work, we describe an improved version of our integrated web service for structural modeling of three-dimensional genome (3D-GNOME), which now incorporates all types of SVs to model changes to the reference 3D conformation of chromatin. In 3D-GNOME 2.0, the default reference 3D genome structure is generated using ChIA-PET data from the GM12878 cell line and SVs data are sourced from the population-scale catalogue of SVs identified by the 1000 Genomes Consortium. However, users may also submit their own structural data to set a customized reference genome structure, and/or a custom input list of SVs. 3D-GNOME 2.0 provides novel tools to inspect, visualize and compare 3D models for regions that differ in terms of their linear genomic sequence. Contact diagrams are displayed to compare the reference 3D structure with the one altered by SVs. In our opinion, 3D-GNOME 2.0 is a unique online tool for modeling and analyzing conformational changes to the human genome induced by SVs across populations. It can be freely accessed at https://3dgnome.cent.uw.edu.pl/.


Assuntos
Cromatina/química , Variação Estrutural do Genoma , Modelos Moleculares , Software , Inversão Cromossômica , Genoma Humano , Humanos , Modelos Genéticos , Conformação Molecular , Deleção de Sequência
2.
Genome Res ; 26(12): 1697-1709, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27789526

RESUMO

ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures.


Assuntos
Cromatina/genética , Cromossomos Humanos/genética , Biologia Computacional/métodos , Imageamento Tridimensional/métodos , Linfócitos B/citologia , Células Cultivadas , Cromossomos , Simulação por Computador , Regulação da Expressão Gênica , Humanos , Armazenamento e Recuperação da Informação , Modelos Genéticos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37028296

RESUMO

Interpolating between points is a problem connected simultaneously with finding geodesics and study of generative models. In the case of geodesics, we search for the curves with the shortest length, while in the case of generative models, we typically apply linear interpolation in the latent space. However, this interpolation uses implicitly the fact that Gaussian is unimodal. Thus, the problem of interpolating in the case when the latent density is non-Gaussian is an open problem. In this article, we present a general and unified approach to interpolation, which simultaneously allows us to search for geodesics and interpolating curves in latent space in the case of arbitrary density. Our results have a strong theoretical background based on the introduced quality measure of an interpolating curve. In particular, we show that maximizing the quality measure of the curve can be equivalently understood as a search of geodesic for a certain redefinition of the Riemannian metric on the space. We provide examples in three important cases. First, we show that our approach can be easily applied to finding geodesics on manifolds. Next, we focus our attention in finding interpolations in pretrained generative models. We show that our model effectively works in the case of arbitrary density. Moreover, we can interpolate in the subset of the space consisting of data possessing a given feature. The last case is focused on finding interpolation in the space of chemical compounds.

4.
Genome Biol ; 20(1): 188, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481103

RESUMO

Following publication of the original article [1], it was noticed that the incorrect Fig. 2 and Fig. 3. were processed during production. It was also noticed that Fig. 4a was processed with a superfluous "1e7" symbol in the upper right corner.

5.
Genome Biol ; 20(1): 148, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362752

RESUMO

BACKGROUND: The number of reported examples of chromatin architecture alterations involved in the regulation of gene transcription and in disease is increasing. However, no genome-wide testing has been performed to assess the abundance of these events and their importance relative to other factors affecting genome regulation. This is particularly interesting given that a vast majority of genetic variations identified in association studies are located outside coding sequences. This study attempts to address this lack by analyzing the impact on chromatin spatial organization of genetic variants identified in individuals from 26 human populations and in genome-wide association studies. RESULTS: We assess the tendency of structural variants to accumulate in spatially interacting genomic segments and design an algorithm to model chromatin conformational changes caused by structural variations. We show that differential gene transcription is closely linked to the variation in chromatin interaction networks mediated by RNA polymerase II. We also demonstrate that CTCF-mediated interactions are well conserved across populations, but enriched with disease-associated SNPs. Moreover, we find boundaries of topological domains as relatively frequent targets of duplications, which suggest that these duplications can be an important evolutionary mechanism of genome spatial organization. CONCLUSIONS: This study assesses the critical impact of genetic variants on the higher-order organization of chromatin folding and provides insight into the mechanisms regulating gene transcription at the population scale, of which local arrangement of chromatin loops seems to be the most significant. It provides the first insight into the variability of the human 3D genome at the population scale.


Assuntos
Cromatina/química , Genoma Humano , Variação Estrutural do Genoma , Algoritmos , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Grupos Raciais/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA