Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cardiol Young ; 32(8): 1333-1337, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35016743

RESUMO

A maternally inherited novel pathogenic non-POU domain-containing octamer-binding gene variant c.767G>T, p.R256I [NM_001145408], manifested in a male infant as dilated cardiomyopathy with severe left ventricular dysfunction and dilation, biventricular non-compaction, tricuspid hypoplasia, and hydrocephaly. To the best of our knowledge, no previous non-POU domain-containing octamer-binding gene variants with biventricular non-compaction have been associated with tricuspid valve hypoplasia. Hence, this case introduces a new pathogenic variant observed in the non-POU domain-containing octamer-binding gene and adds to the range of cardiac phenotypes identified in non-POU domain-containing octamer-binding gene variants.


Assuntos
Cardiomiopatias , Proteínas de Ligação a DNA , Proteínas de Ligação a DNA/genética , Humanos , Masculino
2.
BMC Med Res Methodol ; 21(1): 160, 2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332547

RESUMO

BACKGROUND: Data monitoring of clinical trials is a tool aimed at reducing the risks of random errors (e.g. clerical errors) and systematic errors, which include misinterpretation, misunderstandings, and fabrication. Traditional 'good clinical practice data monitoring' with on-site monitors increases trial costs and is time consuming for the local investigators. This paper aims to outline our approach of time-effective central data monitoring for the SafeBoosC-III multicentre randomised clinical trial and present the results from the first three central data monitoring meetings. METHODS: The present approach to central data monitoring was implemented for the SafeBoosC-III trial, a large, pragmatic, multicentre, randomised clinical trial evaluating the benefits and harms of treatment based on cerebral oxygenation monitoring in preterm infants during the first days of life versus monitoring and treatment as usual. We aimed to optimise completeness and quality and to minimise deviations, thereby limiting random and systematic errors. We designed an automated report which was blinded to group allocation, to ease the work of data monitoring. The central data monitoring group first reviewed the data using summary plots only, and thereafter included the results of the multivariate Mahalanobis distance of each centre from the common mean. The decisions of the group were manually added to the reports for dissemination, information, correcting errors, preventing furture errors and documentation. RESULTS: The first three central monitoring meetings identified 156 entries of interest, decided upon contacting the local investigators for 146 of these, which resulted in correction of 53 entries. Multiple systematic errors and protocol violations were identified, one of these included 103/818 randomised participants. Accordingly, the electronic participant record form (ePRF) was improved to reduce ambiguity. DISCUSSION: We present a methodology for central data monitoring to optimise quality control and quality development. The initial results included identification of random errors in data entries leading to correction of the ePRF, systematic protocol violations, and potential protocol adherence issues. Central data monitoring may optimise concurrent data completeness and may help timely detection of data deviations due to misunderstandings or fabricated data.


Assuntos
Recém-Nascido Prematuro , Humanos , Recém-Nascido , Monitorização Fisiológica
3.
Cochrane Database Syst Rev ; 5: CD013837, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33998666

RESUMO

BACKGROUND: Neonatal sepsis is a major cause of morbidity and mortality. It is the third leading cause of neonatal mortality globally constituting 13% of overall neonatal mortality. Despite the high burden of neonatal sepsis, high-quality evidence in diagnosis and treatment is scarce. Possibly due to the diagnostic challenges of sepsis and the relative immunosuppression of the newborn, many neonates receive antibiotics for suspected sepsis. Antibiotics have become the most used therapeutics in neonatal intensive care units. The last Cochrane Review was updated in 2004. Given the clinical importance, an updated systematic review assessing the effects of different antibiotic regimens for early-onset neonatal sepsis is needed. OBJECTIVES: To assess the beneficial and harmful effects of different antibiotic regimens for early-onset neonatal sepsis. SEARCH METHODS: We searched the following electronic databases: CENTRAL (2020, Issue 8); Ovid MEDLINE; Embase Ovid; CINAHL; LILACS; Science Citation Index EXPANDED and Conference Proceedings Citation Index - Science on 12 March 2021. We searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-RCTs. SELECTION CRITERIA: We included RCTs comparing different antibiotic regimens for early-onset neonatal sepsis. We included participants from birth to 72 hours of life at randomisation. DATA COLLECTION AND ANALYSIS: Three review authors independently assessed studies for inclusion, extracted data, and assessed risk of bias. We used the GRADE approach to assess the certainty of evidence. Our primary outcome was all-cause mortality, and our secondary outcomes were: serious adverse events, respiratory support, circulatory support, nephrotoxicity, neurological developmental impairment, necrotising enterocolitis, and ototoxicity. Our primary time point of interest was at maximum follow-up. MAIN RESULTS: We included five RCTs (865 participants). All trials were at high risk of bias. The certainty of the evidence according to GRADE was very low. The included trials assessed five different comparisons of antibiotics. We did not conduct any meta-analyses due to lack of relevant data. Of the five included trials one trial compared ampicillin plus gentamicin with benzylpenicillin plus gentamicin; one trial compared piperacillin plus tazobactam with amikacin; one trial compared ticarcillin plus clavulanic acid with piperacillin plus gentamicin; one trial compared piperacillin with ampicillin plus amikacin; and one trial compared ceftazidime with benzylpenicillin plus gentamicin. None of the five comparisons found any evidence of a difference when assessing all-cause mortality, serious adverse events, circulatory support, nephrotoxicity, neurological developmental impairment, or necrotising enterocolitis; however, none of the trials were near an information size that could contribute significantly to the evidence of the comparative benefits and risks of any particular antibiotic regimen. None of the trials assessed respiratory support or ototoxicity. The benefits and harms of different antibiotic regimens remain unclear due to the lack of well-powered trials and the high risk of systematic errors. AUTHORS' CONCLUSIONS: Current evidence is insufficient to support any antibiotic regimen being superior to another. Large RCTs assessing different antibiotic regimens in early-onset neonatal sepsis with low risk of bias are warranted.


Assuntos
Antibacterianos/uso terapêutico , Sepse Neonatal/tratamento farmacológico , Antibacterianos/efeitos adversos , Viés , Causas de Morte , Humanos , Recém-Nascido , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Cochrane Database Syst Rev ; 5: CD013836, 2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-33998665

RESUMO

BACKGROUND: Neonatal sepsis is a major cause of morbidity and mortality. It is the third leading cause of neonatal mortality globally constituting 13% of overall neonatal mortality. Despite the high burden of neonatal sepsis, high-quality evidence in diagnosis and treatment is scarce. Due to the diagnostic challenges of sepsis and the relative immunosuppression of the newborn, many neonates receive antibiotics for suspected sepsis. Antibiotics have become the most used therapeutics in neonatal intensive care units, and observational studies in high-income countries suggest that 83% to 94% of newborns treated with antibiotics for suspected sepsis have negative blood cultures. The last Cochrane Review was updated in 2005. There is a need for an updated systematic review assessing the effects of different antibiotic regimens for late-onset neonatal sepsis. OBJECTIVES: To assess the beneficial and harmful effects of different antibiotic regimens for late-onset neonatal sepsis. SEARCH METHODS: We searched the following electronic databases: CENTRAL (2021, Issue 3); Ovid MEDLINE; Embase Ovid; CINAHL; LILACS; Science Citation Index EXPANDED and Conference Proceedings Citation Index - Science on 12 March 2021. We also searched clinical trials databases and the reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-RCTs. SELECTION CRITERIA: We included RCTs comparing different antibiotic regimens for late-onset neonatal sepsis. We included participants older than 72 hours of life at randomisation, suspected or diagnosed with neonatal sepsis, meningitis, osteomyelitis, endocarditis, or necrotising enterocolitis. We excluded trials that assessed treatment of fungal infections. DATA COLLECTION AND ANALYSIS: Three review authors independently assessed studies for inclusion, extracted data, and assessed risk of bias. We used the GRADE approach to assess the certainty of evidence. Our primary outcome was all-cause mortality, and our secondary outcomes were: serious adverse events, respiratory support, circulatory support, nephrotoxicity, neurological developmental impairment, necrotising enterocolitis, and ototoxicity. Our primary time point of interest was at maximum follow-up. MAIN RESULTS: We included five RCTs (580 participants). All trials were at high risk of bias, and had very low-certainty evidence. The five included trials assessed five different comparisons of antibiotics. We did not conduct a meta-analysis due to lack of relevant data. Of the five included trials one trial compared cefazolin plus amikacin with vancomycin plus amikacin; one trial compared ticarcillin plus clavulanic acid with flucloxacillin plus gentamicin; one trial compared cloxacillin plus amikacin with cefotaxime plus gentamicin; one trial compared meropenem with standard care (ampicillin plus gentamicin or cefotaxime plus gentamicin); and one trial compared vancomycin plus gentamicin with vancomycin plus aztreonam. None of the five comparisons found any evidence of a difference when assessing all-cause mortality, serious adverse events, circulatory support, nephrotoxicity, neurological developmental impairment, or necrotising enterocolitis; however, none of the trials were near an information size that could contribute significantly to the evidence of the comparative benefits and risks of any particular antibiotic regimen. None of the trials assessed respiratory support or ototoxicity. The benefits and harms of different antibiotic regimens remain unclear due to the lack of well-powered trials and the high risk of systematic errors. AUTHORS' CONCLUSIONS: Current evidence is insufficient to support any antibiotic regimen being superior to another. RCTs assessing different antibiotic regimens in late-onset neonatal sepsis with low risks of bias are warranted.


ANTECEDENTES: La sepsis neonatal es una causa importante de morbilidad y mortalidad. Es la tercera causa de mortalidad neonatal a nivel mundial y constituye el 13% de la mortalidad neonatal total. A pesar de la elevada carga de la sepsis neonatal, la evidencia de alta calidad en el diagnóstico y el tratamiento es escasa. Debido a las dificultades de diagnóstico de la sepsis y a la relativa inmunosupresión del neonato, muchos reciben antibióticos por sospecha de sepsis. Los antibióticos se han convertido en el tratamiento más utilizado en las unidades de cuidados intensivos neonatales, y los estudios observacionales realizados en países de ingresos altos indican que entre el 83% y el 94% de los neonatos tratados con antibióticos por sospecha de sepsis tienen hemocultivos negativos. La última revisión Cochrane se actualizó en 2005. Se necesita una revisión sistemática actualizada que evalúe los efectos de los diferentes regímenes de antibióticos para la sepsis neonatal de inicio tardío. OBJETIVOS: Evaluar los efectos beneficiosos y perjudiciales de diferentes regímenes antibióticos para la sepsis neonatal de inicio tardío. MÉTODOS DE BÚSQUEDA: Se hicieron búsquedas en las siguientes bases de datos electrónicas: CENTRAL (2021, número 3); Ovid MEDLINE; Embase Ovid; CINAHL; LILACS; Science Citation Index EXPANDED y Conference Proceedings Citation Index ­ Science el 12 de marzo de 2021. También se buscaron ensayos controlados aleatorizados (ECA) y cuasialeatorizados en las bases de datos de ensayos clínicos y en las listas de referencias de artículos identificados. CRITERIOS DE SELECCIÓN: Se incluyeron ECA que compararon diferentes regímenes de antibióticos para la sepsis neonatal de inicio tardío. Se incluyeron participantes mayores de 72 horas de vida en el momento de la asignación al azar, con sospecha o diagnóstico de sepsis neonatal, meningitis, osteomielitis, endocarditis o enterocolitis necrosante. Se excluyeron los ensayos que evaluaron el tratamiento de las infecciones micóticas. OBTENCIÓN Y ANÁLISIS DE LOS DATOS: Dos autores de la revisión, de forma independiente, evaluaron los estudios para inclusión, extrajeron los datos y evaluaron el riesgo de sesgo. Se utilizó el método GRADE para evaluar la certeza de la evidencia. El desenlace principal fue la mortalidad por todas las causas, y los desenlaces secundarios fueron: eventos adversos graves, asistencia respiratoria, apoyo circulatorio, nefrotoxicidad, deterioro del desarrollo neurológico, enterocolitis necrosante y ototoxicidad. El punto temporal principal de interés fue el seguimiento máximo. RESULTADOS PRINCIPALES: Se incluyeron cinco ECA (580 participantes). Todos los ensayos tuvieron alto riesgo de sesgo y evidencia de certeza muy baja. Los cinco ensayos incluidos evaluaron cinco comparaciones diferentes de antibióticos. No se realizó un metanálisis debido a la falta de datos relevantes. De los cinco ensayos incluidos, un ensayo comparó cefazolina más amikacina con vancomicina más amikacina; un ensayo comparó ticarcilina más ácido clavulánico con flucloxacilina más gentamicina; un ensayo comparó cloxacilina más amikacina con cefotaxima más gentamicina; un ensayo comparó meropenem con atención estándar (ampicilina más gentamicina o cefotaxima más gentamicina); y un ensayo comparó vancomicina más gentamicina con vancomicina más aztreonam. Ninguna de las cinco comparaciones encontró evidencia de una diferencia al evaluar la mortalidad por todas las causas, los eventos adversos graves, el apoyo circulatorio, la nefrotoxicidad, el deterioro del desarrollo neurológico o la enterocolitis necrosante; sin embargo, ninguno de los ensayos se acercó a un tamaño de información que pudiera contribuir significativamente a la evidencia de los beneficios y los riesgos comparativos de cualquier régimen antibiótico en particular. Ninguno de los ensayos evaluó la asistencia respiratoria o la ototoxicidad. Los efectos beneficiosos y perjudiciales de los diferentes regímenes de antibióticos aún no están claros debido a la falta de ensayos con un poder estadístico adecuado y al alto riesgo de errores sistemáticos. CONCLUSIONES DE LOS AUTORES: La evidencia actual no es suficiente para apoyar que un régimen de antibióticos sea superior a otro. Se justifica la realización de ECA con bajo riesgo de sesgo que evalúen diferentes regímenes antibióticos en la sepsis neonatal de inicio tardío.


Assuntos
Antibacterianos/uso terapêutico , Sepse Neonatal/tratamento farmacológico , Amicacina/efeitos adversos , Amicacina/uso terapêutico , Ampicilina/efeitos adversos , Ampicilina/uso terapêutico , Antibacterianos/efeitos adversos , Aztreonam/efeitos adversos , Aztreonam/uso terapêutico , Viés , Cefazolina/efeitos adversos , Cefazolina/uso terapêutico , Ácido Clavulânico/efeitos adversos , Ácido Clavulânico/uso terapêutico , Quimioterapia Combinada , Floxacilina/efeitos adversos , Floxacilina/uso terapêutico , Gentamicinas/efeitos adversos , Gentamicinas/uso terapêutico , Humanos , Recém-Nascido , Ensaios Clínicos Controlados Aleatórios como Assunto , Ticarcilina/efeitos adversos , Ticarcilina/uso terapêutico , Vancomicina/efeitos adversos , Vancomicina/uso terapêutico
5.
Cochrane Database Syst Rev ; 11: CD012565, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739733

RESUMO

BACKGROUND: Cardiovascular disease is the number one cause of death globally. According to the World Health Organization (WHO), 7.4 million people died from ischaemic heart disease in 2012, constituting 15% of all deaths. Beta-blockers are recommended and are often used in patients with heart failure after acute myocardial infarction. However, it is currently unclear whether beta-blockers should be used in patients without heart failure after acute myocardial infarction. Previous meta-analyses on the topic have shown conflicting results. No previous systematic review using Cochrane methods has assessed the effects of beta-blockers in patients without heart failure after acute myocardial infarction. OBJECTIVES: To assess the benefits and harms of beta-blockers compared with placebo or no treatment in patients without heart failure and with left ventricular ejection fraction (LVEF) greater than 40% in the non-acute phase after myocardial infarction. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, LILACS, Science Citation Index - Expanded, BIOSIS Citation Index, the WHO International Clinical Trials Registry Platform, ClinicalTrials.gov, European Medicines Agency, Food and Drug Administration, Turning Research Into Practice, Google Scholar, and SciSearch from their inception to February 2021. SELECTION CRITERIA: We included all randomised clinical trials assessing effects of beta-blockers versus control (placebo or no treatment) in patients without heart failure after myocardial infarction, irrespective of publication type and status, date, and language. We excluded trials randomising participants with diagnosed heart failure at the time of randomisation. DATA COLLECTION AND ANALYSIS: We followed our published protocol, with a few changes made, and methodological recommendations provided by Cochrane and Jakobsen and colleagues. Two review authors independently extracted data. Our primary outcomes were all-cause mortality, serious adverse events, and major cardiovascular events (composite of cardiovascular mortality and non-fatal myocardial reinfarction). Our secondary outcomes were quality of life, angina, cardiovascular mortality, and myocardial infarction during follow-up. We assessed all outcomes at maximum follow-up. We systematically assessed risks of bias using seven bias domains and we assessed the certainty of evidence using the GRADE approach. MAIN RESULTS: We included 25 trials randomising a total of 22,423 participants (mean age 56.9 years). All trials and outcomes were at high risk of bias. In all, 24 of 25 trials included a mixed group of participants with ST-elevation myocardial infarction and non-ST myocardial infarction, and no trials provided separate results for each type of infarction. One trial included participants with only ST-elevation myocardial infarction. All trials except one included participants younger than 75 years of age. Methods used to exclude heart failure were various and were likely insufficient. A total of 21 trials used placebo, and four trials used no intervention, as the comparator. All patients received usual care; 24 of 25 trials were from the pre-reperfusion era (published from 1974 to 1999), and only one trial was from the reperfusion era (published in 2018). The certainty of evidence was moderate to low for all outcomes. Our meta-analyses show that beta-blockers compared with placebo or no intervention probably reduce the risks of all-cause mortality (risk ratio (RR) 0.81, 97.5% confidence interval (CI) 0.73 to 0.90; I² = 15%; 22,085 participants, 21 trials; moderate-certainty evidence) and myocardial reinfarction (RR 0.76, 98% CI 0.69 to 0.88; I² = 0%; 19,606 participants, 19 trials; moderate-certainty evidence). Our meta-analyses show that beta-blockers compared with placebo or no intervention may reduce the risks of major cardiovascular events (RR 0.72, 97.5% CI 0.69 to 0.84; 14,994 participants, 15 trials; low-certainty evidence) and cardiovascular mortality (RR 0.73, 98% CI 0.68 to 0.85; I² = 47%; 21,763 participants, 19 trials; low-certainty evidence). Hence, evidence seems to suggest that beta-blockers versus placebo or no treatment may result in a minimum reduction of 10% in RR for risks of all-cause mortality, major cardiovascular events, cardiovascular mortality, and myocardial infarction. However, beta-blockers compared with placebo or no intervention may not affect the risk of angina (RR 1.04, 98% CI 0.93 to 1.13; I² = 0%; 7115 participants, 5 trials; low-certainty evidence). No trials provided data on serious adverse events according to good clinical practice from the International Committee for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH-GCP), nor on quality of life. AUTHORS' CONCLUSIONS: Beta-blockers probably reduce the risks of all-cause mortality and myocardial reinfarction in patients younger than 75 years of age without heart failure following acute myocardial infarction. Beta-blockers may further reduce the risks of major cardiovascular events and cardiovascular mortality compared with placebo or no intervention in patients younger than 75 years of age without heart failure following acute myocardial infarction. These effects could, however, be driven by patients with unrecognised heart failure. The effects of beta-blockers on serious adverse events, angina, and quality of life are unclear due to sparse data or no data at all. All trials and outcomes were at high risk of bias, and incomplete outcome data bias alone could account for the effect seen when major cardiovascular events, angina, and myocardial infarction are assessed. The evidence in this review is of moderate to low certainty, and the true result may depart substantially from the results presented here. Future trials should particularly focus on patients 75 years of age and older, and on assessment of serious adverse events according to ICH-GCP and quality of life. Newer randomised clinical trials at low risk of bias and at low risk of random errors are needed if the benefits and harms of beta-blockers in contemporary patients without heart failure following acute myocardial infarction are to be assessed properly. Such trials ought to be designed according to the SPIRIT statement and reported according to the CONSORT statement.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Causas de Morte , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Qualidade de Vida , Volume Sistólico , Função Ventricular Esquerda
6.
Cochrane Database Syst Rev ; 2: CD003610, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33704780

RESUMO

BACKGROUND: Coronary heart disease is the leading cause of mortality worldwide with approximately 7.4 million deaths each year. People with established coronary heart disease have a high risk of subsequent cardiovascular events including myocardial infarction, stroke, and cardiovascular death. Antibiotics might prevent such outcomes due to their antibacterial, antiinflammatory, and antioxidative effects. However, a randomised clinical trial and several observational studies have suggested that antibiotics may increase the risk of cardiovascular events and mortality. Furthermore, several non-Cochrane Reviews, that are now outdated, have assessed the effects of antibiotics for coronary heart disease and have shown conflicting results. No previous systematic review using Cochrane methodology has assessed the effects of antibiotics for coronary heart disease. OBJECTIVES: We assessed the benefits and harms of antibiotics compared with placebo or no intervention for the secondary prevention of coronary heart disease. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, LILACS, SCI-EXPANDED, and BIOSIS in December 2019 in order to identify relevant trials. Additionally, we searched TRIP, Google Scholar, and nine trial registries in December 2019. We also contacted 11 pharmaceutical companies and searched the reference lists of included trials, previous systematic reviews, and other types of reviews. SELECTION CRITERIA: Randomised clinical trials assessing the effects of antibiotics versus placebo or no intervention for secondary prevention of coronary heart disease in adult participants (≥18 years). Trials were included irrespective of setting, blinding, publication status, publication year, language, and reporting of our outcomes. DATA COLLECTION AND ANALYSIS: Three review authors independently extracted data. Our primary outcomes were all-cause mortality, serious adverse event according to the International Conference on Harmonization - Good Clinical Practice (ICH-GCP), and quality of life. Our secondary outcomes were cardiovascular mortality, myocardial infarction, stroke, and sudden cardiac death. Our primary time point of interest was at maximum follow-up. Additionally, we extracted outcome data at 24±6 months follow-up. We assessed the risks of systematic errors using Cochrane 'Rosk of bias' tool. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) for dichotomous outcomes. We calculated absolute risk reduction (ARR) or increase (ARI) and number needed to treat for an additional beneficial outcome (NNTB) or for an additional harmful outcome (NNTH) if the outcome result showed a beneficial or harmful effect, respectively. The certainty of the body of evidence was assessed by GRADE. MAIN RESULTS: We included 38 trials randomising a total of 26,638 participants (mean age 61.6 years), with 23/38 trials reporting data on 26,078 participants that could be meta-analysed. Three trials were at low risk of bias and the 35 remaining trials were at high risk of bias. Trials assessing the effects of macrolides (28 trials; 22,059 participants) and quinolones (two trials; 4162 participants) contributed with the vast majority of the data. Meta-analyses at maximum follow-up showed that antibiotics versus placebo or no intervention seemed to increase the risk of all-cause mortality (RR 1.06; 95% CI 0.99 to 1.13; P = 0.07; I2 = 0%; ARI 0.48%; NNTH 208; 25,774 participants; 20 trials; high certainty of evidence), stroke (RR 1.14; 95% CI 1.00 to 1.29; P = 0.04; I2 = 0%; ARI 0.73%; NNTH 138; 14,774 participants; 9 trials; high certainty of evidence), and probably also cardiovascular mortality (RR 1.11; 95% CI 0.98 to 1.25; P = 0.11; I2= 0%; 4674 participants; 2 trials; moderate certainty of evidence). Little to no difference was observed when assessing the risk of myocardial infarction (RR 0.95; 95% CI 0.88 to 1.03; P = 0.23; I2 = 0%; 25,523 participants; 17 trials; high certainty of evidence). No evidence of a difference was observed when assessing sudden cardiac death (RR 1.08; 95% CI 0.90 to 1.31; P = 0.41; I2 = 0%; 4520 participants; 2 trials; moderate certainty of evidence). Meta-analyses at 24±6 months follow-up showed that antibiotics versus placebo or no intervention increased the risk of all-cause mortality (RR 1.25; 95% CI 1.06 to 1.48; P = 0.007; I2 = 0%; ARI 1.26%; NNTH 79 (95% CI 335 to 42); 9517 participants; 6 trials; high certainty of evidence), cardiovascular mortality (RR 1.50; 95% CI 1.17 to 1.91; P = 0.001; I2 = 0%; ARI 1.12%; NNTH 89 (95% CI 261 to 49); 9044 participants; 5 trials; high certainty of evidence), and probably also sudden cardiac death (RR 1.77; 95% CI 1.28 to 2.44; P = 0.0005; I2 = 0%; ARI 1.9%; NNTH 53 (95% CI 145 to 28); 4520 participants; 2 trials; moderate certainty of evidence). No evidence of a difference was observed when assessing the risk of myocardial infarction (RR 0.95; 95% CI 0.82 to 1.11; P = 0.53; I2 = 43%; 9457 participants; 5 trials; moderate certainty of evidence) and stroke (RR 1.17; 95% CI 0.90 to 1.52; P = 0.24; I2 = 0%; 9457 participants; 5 trials; high certainty of evidence). Meta-analyses of trials at low risk of bias differed from the overall analyses when assessing cardiovascular mortality at maximum follow-up. For all other outcomes, meta-analyses of trials at low risk of bias did not differ from the overall analyses. None of the trials specifically assessed serious adverse event according to ICH-GCP. No data were found on quality of life. AUTHORS' CONCLUSIONS: Our present review indicates that antibiotics (macrolides or quinolones) for secondary prevention of coronary heart disease seem harmful when assessing the risk of all-cause mortality, cardiovascular mortality, and stroke at maximum follow-up and all-cause mortality, cardiovascular mortality, and sudden cardiac death at 24±6 months follow-up. Current evidence does, therefore, not support the clinical use of macrolides and quinolones for the secondary prevention of coronary heart disease. Future trials on the safety of macrolides or quinolones for the secondary prevention in patients with coronary heart disease do not seem ethical. In general, randomised clinical trials assessing the effects of antibiotics, especially macrolides and quinolones, need longer follow-up so that late-occurring adverse events can also be assessed.


Assuntos
Antibacterianos/efeitos adversos , Doença das Coronárias/prevenção & controle , Prevenção Secundária/métodos , Antibacterianos/uso terapêutico , Doenças Cardiovasculares/mortalidade , Causas de Morte , Doença das Coronárias/mortalidade , Morte Súbita Cardíaca/epidemiologia , Humanos , Macrolídeos/efeitos adversos , Macrolídeos/uso terapêutico , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Quinolonas/efeitos adversos , Quinolonas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/epidemiologia
7.
Cochrane Database Syst Rev ; 12: CD012484, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31845756

RESUMO

BACKGROUND: Cardiovascular disease is the number one cause of death globally. According to the World Health Organization, 7.4 million people died from ischaemic heart diseases in 2012, constituting 15% of all deaths. Acute myocardial infarction is caused by blockage of the blood supplied to the heart muscle. Beta-blockers are often used in patients with acute myocardial infarction. Previous meta-analyses on the topic have shown conflicting results ranging from harms, neutral effects, to benefits. No previous systematic review using Cochrane methodology has assessed the effects of beta-blockers for acute myocardial infarction. OBJECTIVES: To assess the benefits and harms of beta-blockers compared with placebo or no intervention in people with suspected or diagnosed acute myocardial infarction. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, LILACS, Science Citation Index Expanded and BIOSIS Citation Index in June 2019. We also searched the WHO International Clinical Trials Registry Platform, ClinicalTrials.gov, Turning Research into Practice, Google Scholar, SciSearch, and the reference lists of included trials and previous reviews in August 2019. SELECTION CRITERIA: We included all randomised clinical trials assessing the effects of beta-blockers versus placebo or no intervention in people with suspected or diagnosed acute myocardial infarction. Trials were included irrespective of trial design, setting, blinding, publication status, publication year, language, and reporting of our outcomes. DATA COLLECTION AND ANALYSIS: We followed the Cochrane methodological recommendations. Four review authors independently extracted data. Our primary outcomes were all-cause mortality, serious adverse events according to the International Conference on Harmonization - Good Clinical Practice (ICH-GCP), and major adverse cardiovascular events (composite of cardiovascular mortality and non-fatal myocardial infarction during follow-up). Our secondary outcomes were quality of life, angina, cardiovascular mortality, and myocardial infarction during follow-up. Our primary time point of interest was less than three months after randomisation. We also assessed the outcomes at maximum follow-up beyond three months. Due to risk of multiplicity, we calculated a 97.5% confidence interval (CI) for the primary outcomes and a 98% CI for the secondary outcomes. We assessed the risks of systematic errors through seven bias domains in accordance to the instructions given in the Cochrane Handbook. The quality of the body of evidence was assessed by GRADE. MAIN RESULTS: We included 63 trials randomising a total of 85,550 participants (mean age 57.4 years). Only one trial was at low risk of bias. The remaining trials were at high risk of bias. The quality of the evidence according to GRADE ranged from very low to high. Fifty-six trials commenced beta-blockers during the acute phase of acute myocardial infarction and seven trials during the subacute phase. At our primary time point 'less than three months follow-up', meta-analysis showed that beta-blockers versus placebo or no intervention probably reduce the risk of a reinfarction during follow-up (risk ratio (RR) 0.82, 98% confidence interval (CI) 0.73 to 0.91; 67,562 participants; 18 trials; moderate-quality evidence) with an absolute risk reduction of 0.5% and a number needed to treat for an additional beneficial outcome (NNTB) of 196 participants. However, we found little or no effect of beta-blockers when assessing all-cause mortality (RR 0.94, 97.5% CI 0.90 to 1.00; 80,452 participants; 46 trials/47 comparisons; high-quality evidence) with an absolute risk reduction of 0.4% and cardiovascular mortality (RR 0.99, 95% CI 0.91 to 1.08; 45,852 participants; 1 trial; moderate-quality evidence) with an absolute risk reduction of 0.4%. Regarding angina, it is uncertain whether beta-blockers have a beneficial or harmful effect (RR 0.70, 98% CI 0.25 to 1.84; 98 participants; 3 trials; very low-quality evidence) with an absolute risk reduction of 7.1%. None of the trials specifically assessed nor reported serious adverse events according to ICH-GCP. Only two trials specifically assessed major adverse cardiovascular events, however, no major adverse cardiovascular events occurred in either trial. At maximum follow-up beyond three months, meta-analyses showed that beta-blockers versus placebo or no intervention probably reduce the risk of all-cause mortality (RR 0.93, 97.5% CI 0.86 to 0.99; 25,210 participants; 21 trials/22 comparisons; moderate-quality evidence) with an absolute risk reduction of 1.1% and a NNTB of 91 participants, and cardiovascular mortality (RR 0.90, 98% CI 0.83 to 0.98; 22,457 participants; 14 trials/15 comparisons; moderate-quality evidence) with an absolute risk reduction of 1.2% and a NNTB of 83 participants. However, it is uncertain whether beta-blockers have a beneficial or harmful effect when assessing major adverse cardiovascular events (RR 0.81, 97.5% CI 0.40 to 1.66; 475 participants; 4 trials; very low-quality evidence) with an absolute risk reduction of 1.7%; reinfarction (RR 0.89, 98% CI 0.75 to 1.08; 6825 participants; 14 trials; low-quality evidence) with an absolute risk reduction of 0.9%; and angina (RR 0.64, 98% CI 0.18 to 2.0; 844 participants; 2 trials; very low-quality evidence). None of the trials specifically assessed nor reported serious adverse events according to ICH-GCP. None of the trials assessed quality of life. We identified two ongoing randomised clinical trials investigating the effect of early administration of beta-blockers after percutaneous coronary intervention or thrombolysis to patients with an acute myocardial infarction and one ongoing trial investigating the effect of long-term beta-blocker therapy. AUTHORS' CONCLUSIONS: Our present review indicates that beta-blockers for suspected or diagnosed acute myocardial infarction probably reduce the short-term risk of a reinfarction and the long-term risk of all-cause mortality and cardiovascular mortality. Nevertheless, it is most likely that beta-blockers have little or no effect on the short-term risk of all-cause mortality and cardiovascular mortality. Regarding all remaining outcomes (serious adverse events according to ICH-GCP, major adverse cardiovascular events (composite of cardiovascular mortality and non-fatal myocardial infarction during follow-up), the long-term risk of a reinfarction during follow-up, quality of life, and angina), further information is needed to confirm or reject the clinical effects of beta-blockers on these outcomes for people with or suspected of acute myocardial infarction.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Humanos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/mortalidade , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
8.
Cochrane Database Syst Rev ; 8: CD012481, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28832903

RESUMO

BACKGROUND: Approximately 3.7 million people died from acute coronary syndrome worldwide in 2012. Acute coronary syndrome, also known as myocardial infarction or unstable angina pectoris, is caused by a sudden blockage of the blood supplied to the heart muscle. Percutaneous coronary intervention is often used for acute coronary syndrome, but previous systematic reviews on the effects of drug-eluting stents compared with bare-metal stents have shown conflicting results with regard to myocardial infarction; have not fully taken account of the risk of random and systematic errors; and have not included all relevant randomised clinical trials. OBJECTIVES: To assess the benefits and harms of drug-eluting stents versus bare-metal stents in people with acute coronary syndrome. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS, SCI-EXPANDED, and BIOSIS from their inception to January 2017. We also searched two clinical trials registers, the European Medicines Agency and the US Food and Drug Administration databases, and pharmaceutical company websites. In addition, we searched the reference lists of review articles and relevant trials. SELECTION CRITERIA: Randomised clinical trials assessing the effects of drug-eluting stents versus bare-metal stents for acute coronary syndrome. We included trials irrespective of publication type, status, date, or language. DATA COLLECTION AND ANALYSIS: We followed our published protocol and the methodological recommendations of Cochrane. Two review authors independently extracted data. We assessed the risks of systematic error by bias domains. We conducted Trial Sequential Analyses to control the risks of random errors. Our primary outcomes were all-cause mortality, major cardiovascular events, serious adverse events, and quality of life. Our secondary outcomes were angina, cardiovascular mortality, and myocardial infarction. Our primary assessment time point was at maximum follow-up. We assessed the quality of the evidence by the GRADE approach. MAIN RESULTS: We included 25 trials randomising a total of 12,503 participants. All trials were at high risk of bias, and the quality of evidence according to GRADE was low to very low. We included 22 trials where the participants presented with ST-elevation myocardial infarction, 1 trial where participants presented with non-ST-elevation myocardial infarction, and 2 trials where participants presented with a mix of acute coronary syndromes.Meta-analyses at maximum follow-up showed no evidence of a difference when comparing drug-eluting stents with bare-metal stents on the risk of all-cause mortality or major cardiovascular events. The absolute risk of death was 6.97% in the drug-eluting stents group compared with 7.74% in the bare-metal stents group based on the risk ratio (RR) of 0.90 (95% confidence interval (CI) 0.78 to 1.03, 11,250 participants, 21 trials/22 comparisons, low-quality evidence). The absolute risk of a major cardiovascular event was 6.36% in the drug-eluting stents group compared with 6.63% in the bare-metal stents group based on the RR of 0.96 (95% CI 0.83 to 1.11, 10,939 participants, 19 trials/20 comparisons, very low-quality evidence). The results of Trial Sequential Analysis showed that we did not have sufficient information to confirm or reject our anticipated risk ratio reduction of 10% on either all-cause mortality or major cardiovascular events at maximum follow-up.Meta-analyses at maximum follow-up showed evidence of a benefit when comparing drug-eluting stents with bare-metal stents on the risk of a serious adverse event. The absolute risk of a serious adverse event was 18.04% in the drug-eluting stents group compared with 23.01% in the bare-metal stents group based on the RR of 0.80 (95% CI 0.74 to 0.86, 11,724 participants, 22 trials/23 comparisons, low-quality evidence), and Trial Sequential Analysis confirmed this result. When assessing each specific type of adverse event included in the serious adverse event outcome separately, the majority of the events were target vessel revascularisation. When target vessel revascularisation was analysed separately, meta-analysis showed evidence of a benefit of drug-eluting stents, and Trial Sequential Analysis confirmed this result.Meta-analyses at maximum follow-up showed no evidence of a difference when comparing drug-eluting stents with bare-metal stents on the risk of cardiovascular mortality (RR 0.91, 95% CI 0.76 to 1.09, 9248 participants, 14 trials/15 comparisons, very low-quality evidence) or myocardial infarction (RR 0.98, 95% CI 0.82 to 1.18, 10,217 participants, 18 trials/19 comparisons, very low-quality evidence). The results of the Trial Sequential Analysis showed that we had insufficient information to confirm or reject our anticipated risk ratio reduction of 10% on cardiovascular mortality and myocardial infarction.No trials reported results on quality of life or angina. AUTHORS' CONCLUSIONS: The current evidence suggests that drug-eluting stents may lead to fewer serious adverse events compared with bare-metal stents without increasing the risk of all-cause mortality or major cardiovascular events. However, our Trial Sequential Analysis showed that there currently was not enough information to assess a risk ratio reduction of 10% for all-cause mortality, major cardiovascular events, cardiovascular mortality, or myocardial infarction, and there were no data on quality of life or angina. The evidence in this review was of low to very low quality, and the true result may depart substantially from the results presented in this review.More randomised clinical trials with low risk of bias and low risks of random errors are needed if the benefits and harms of drug-eluting stents for acute coronary syndrome are to be assessed properly. More data are needed on the outcomes all-cause mortality, major cardiovascular events, quality of life, and angina to reduce the risk of random error.


Assuntos
Síndrome Coronariana Aguda/terapia , Stents Farmacológicos , Stents , Síndrome Coronariana Aguda/mortalidade , Causas de Morte , Stents Farmacológicos/efeitos adversos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Stents/efeitos adversos
9.
Cochrane Database Syst Rev ; 5: CD011598, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28524930

RESUMO

BACKGROUND: The prevalence of disease-related malnutrition in Western European hospitals is estimated to be about 30%. There is no consensus whether poor nutritional status causes poorer clinical outcome or if it is merely associated with it. The intention with all forms of nutrition support is to increase uptake of essential nutrients and improve clinical outcome. Previous reviews have shown conflicting results with regard to the effects of nutrition support. OBJECTIVES: To assess the benefits and harms of nutrition support versus no intervention, treatment as usual, or placebo in hospitalised adults at nutritional risk. SEARCH METHODS: We searched Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE (Ovid SP), Embase (Ovid SP), LILACS (BIREME), and Science Citation Index Expanded (Web of Science). We also searched the World Health Organization International Clinical Trials Registry Platform (www.who.int/ictrp); ClinicalTrials.gov; Turning Research Into Practice (TRIP); Google Scholar; and BIOSIS, as well as relevant bibliographies of review articles and personal files. All searches are current to February 2016. SELECTION CRITERIA: We include randomised clinical trials, irrespective of publication type, publication date, and language, comparing nutrition support versus control in hospitalised adults at nutritional risk. We exclude trials assessing non-standard nutrition support. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane and the Cochrane Hepato-Biliary Group. We used trial domains to assess the risks of systematic error (bias). We conducted Trial Sequential Analyses to control for the risks of random errors. We considered a P value of 0.025 or less as statistically significant. We used GRADE methodology. Our primary outcomes were all-cause mortality, serious adverse events, and health-related quality of life. MAIN RESULTS: We included 244 randomised clinical trials with 28,619 participants that met our inclusion criteria. We considered all trials to be at high risk of bias. Two trials accounted for one-third of all included participants. The included participants were heterogenous with regard to disease (20 different medical specialties). The experimental interventions were parenteral nutrition (86 trials); enteral nutrition (tube-feeding) (80 trials); oral nutrition support (55 trials); mixed experimental intervention (12 trials); general nutrition support (9 trials); and fortified food (2 trials). The control interventions were treatment as usual (122 trials); no intervention (107 trials); and placebo (15 trials). In 204/244 trials, the intervention lasted three days or more.We found no evidence of a difference between nutrition support and control for short-term mortality (end of intervention). The absolute risk was 8.3% across the control groups compared with 7.8% (7.1% to 8.5%) in the intervention groups, based on the risk ratio (RR) of 0.94 (95% confidence interval (CI) 0.86 to 1.03, P = 0.16, 21,758 participants, 114 trials, low quality of evidence). We found no evidence of a difference between nutrition support and control for long-term mortality (maximum follow-up). The absolute risk was 13.2% in the control group compared with 12.2% (11.6% to 13%) following nutritional interventions based on a RR of 0.93 (95% CI 0.88 to 0.99, P = 0.03, 23,170 participants, 127 trials, low quality of evidence). Trial Sequential Analysis showed we only had enough information to assess a risk ratio reduction of approximately 10% or more. A risk ratio reduction of 10% or more could be rejected.We found no evidence of a difference between nutrition support and control for short-term serious adverse events. The absolute risk was 9.9% in the control groups versus 9.2% (8.5% to 10%), with nutrition based on the RR of 0.93 (95% CI 0.86 to 1.01, P = 0.07, 22,087 participants, 123 trials, low quality of evidence). At long-term follow-up, the reduction in the risk of serious adverse events was 1.5%, from 15.2% in control groups to 13.8% (12.9% to 14.7%) following nutritional support (RR 0.91, 95% CI 0.85 to 0.97, P = 0.004, 23,413 participants, 137 trials, low quality of evidence). However, the Trial Sequential Analysis showed we only had enough information to assess a risk ratio reduction of approximately 10% or more. A risk ratio reduction of 10% or more could be rejected.Trial Sequential Analysis of enteral nutrition alone showed that enteral nutrition might reduce serious adverse events at maximum follow-up in people with different diseases. We could find no beneficial effect of oral nutrition support or parenteral nutrition support on all-cause mortality and serious adverse events in any subgroup.Only 16 trials assessed health-related quality of life. We performed a meta-analysis of two trials reporting EuroQoL utility score at long-term follow-up and found very low quality of evidence for effects of nutritional support on quality of life (mean difference (MD) -0.01, 95% CI -0.03 to 0.01; 3961 participants, two trials). Trial Sequential Analyses showed that we did not have enough information to confirm or reject clinically relevant intervention effects on quality of life.Nutrition support may increase weight at short-term follow-up (MD 1.32 kg, 95% CI 0.65 to 2.00, 5445 participants, 68 trials, very low quality of evidence). AUTHORS' CONCLUSIONS: There is low-quality evidence for the effects of nutrition support on mortality and serious adverse events. Based on the results of our review, it does not appear to lead to a risk ratio reduction of approximately 10% or more in either all-cause mortality or serious adverse events at short-term and long-term follow-up.There is very low-quality evidence for an increase in weight with nutrition support at the end of treatment in hospitalised adults determined to be at nutritional risk. The effects of nutrition support on all remaining outcomes are unclear.Despite the clinically heterogenous population and the high risk of bias of all included trials, our analyses showed limited signs of statistical heterogeneity. Further trials may be warranted, assessing enteral nutrition (tube-feeding) for different patient groups. Future trials ought to be conducted with low risks of systematic errors and low risks of random errors, and they also ought to assess health-related quality of life.


Assuntos
Alimentos Fortificados , Desnutrição/prevenção & controle , Apoio Nutricional , Adulto , Peso Corporal , Causas de Morte , Nutrição Enteral/efeitos adversos , Nutrição Enteral/estatística & dados numéricos , Alimentos Fortificados/estatística & dados numéricos , Hospitalização , Humanos , Desnutrição/mortalidade , Apoio Nutricional/efeitos adversos , Apoio Nutricional/estatística & dados numéricos , Nutrição Parenteral/efeitos adversos , Nutrição Parenteral/estatística & dados numéricos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
Ugeskr Laeger ; 186(3)2024 01 15.
Artigo em Dinamarquês | MEDLINE | ID: mdl-38305265

RESUMO

Paediatric patients with ventricular pre-excitation/asymptomatic WPW syndrome have a higher risk of atrial fibrillation degenerating into ventricular fibrillation and sudden cardiac death (SCD). In more than half of these patients this can be the first symptom presenting. Hence, it is important to conduct a risk stratification for SCD in asymptomatic patients with pre-excitation/delta wave in the ECGs. In this review, invasive risk stratification by electrophysiologic testing and ablation is recommended when possible. Catheter ablation is reported to have a high rate of success and low risk of complications.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Síndrome de Wolff-Parkinson-White , Criança , Humanos , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Ablação por Cateter/efeitos adversos , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Eletrocardiografia , Risco , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/terapia , Síndrome de Wolff-Parkinson-White/complicações , Síndrome de Wolff-Parkinson-White/diagnóstico
11.
Ugeskr Laeger ; 185(8)2023 02 20.
Artigo em Dinamarquês | MEDLINE | ID: mdl-36892318

RESUMO

In this case report, a previously asymptomatic 11-year-old boy presented with sudden palpitations and syncope. He eventually went into cardiac arrest and was successfully resuscitated. The ECG showed pre-excited atrial fibrillation degenerating into pulseless ventricular tachycardia. The patient was found to have Wolff-Parkinson-White syndrome (WPW) with an accessory pathway between right atrium and ventricle which was successfully ablated. Sudden cardiac death (SCD) is rare in WPW, however, early diagnosis is essential for eliminating the risk of SCD.


Assuntos
Fibrilação Atrial , Parada Cardíaca , Síndrome de Wolff-Parkinson-White , Masculino , Humanos , Criança , Síndrome de Wolff-Parkinson-White/complicações , Síndrome de Wolff-Parkinson-White/diagnóstico , Síndrome de Wolff-Parkinson-White/cirurgia , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Fibrilação Atrial/complicações , Síncope/etiologia , Eletrocardiografia/efeitos adversos
12.
J Clin Epidemiol ; 135: 29-41, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33561529

RESUMO

OBJECTIVE: To develop and validate Clinical Diversity In Meta-analyses (CDIM), a new tool for assessing clinical diversity between trials in meta-analyses of interventions. STUDY DESIGN AND SETTING: The development of CDIM was based on consensus work informed by empirical literature and expertise. We drafted the CDIM tool, refined it, and validated CDIM for interrater scale reliability and agreement in three groups. RESULTS: CDIM measures clinical diversity on a scale that includes four domains with 11 items overall: setting (time of conduct/country development status/units type); population (age, sex, patient inclusion criteria/baseline disease severity, comorbidities); interventions (intervention intensity/strength/duration of intervention, timing, control intervention, cointerventions); and outcome (definition of outcome, timing of outcome assessment). The CDIM is completed in two steps: first two authors independently assess clinical diversity in the four domains. Second, after agreeing upon scores of individual items a consensus score is achieved. Interrater scale reliability and agreement ranged from moderate to almost perfect depending on the type of raters. CONCLUSION: CDIM is the first tool developed for assessing clinical diversity in meta-analyses of interventions. We found CDIM to be a reliable tool for assessing clinical diversity among trials in meta-analysis.


Assuntos
Metanálise como Assunto , Projetos de Pesquisa/estatística & dados numéricos , Viés , Humanos , Reprodutibilidade dos Testes
13.
Syst Rev ; 8(1): 306, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805993

RESUMO

BACKGROUND: Sepsis is a major cause of morbidity and mortality among neonates and infants. Antibiotics are a central part of the first line treatment for sepsis in neonatal intensive care units worldwide. However, the evidence on the clinical effects of the commonly used antibiotic regimens for sepsis in neonates remains scarce. This systematic review aims to assess the efficacy and harms of antibiotic regimens for neonatal sepsis. METHODS: Electronic searches will be conducted in MEDLINE, Embase, The Cochrane Library, CINAHL, ZETOC and clinical trial registries (clinicaltrials.gov and ISRCTN). We will include randomised controlled trials of different antibiotic regimens for sepsis of neonates and infants. Eligible interventions will be any antibiotic regimen. Two reviewers will independently screen, select, and extract data. The methodological quality of individual studies will be appraised following Cochrane methodology. Primary outcomes will be 'all-cause mortality' and 'serious adverse events'. Secondary outcomes will be 'need for respiratory support', 'need for circulatory support', 'neurodevelopmental impairment', ototoxicity, nephrotoxicity and necrotizing enterocolitis. We plan to perform a meta-analysis with trial sequential analysis. DISCUSSION: This is the study protocol for a systematic review on the effects of different antibiotic regimens for neonatal sepsis. The results of this systematic review intent to adequately inform stakeholders or health care professionals in the field of neonatal sepsis, and to aid appropriate development of treatment guidelines. SYSTEMATIC REVIEW REGISTRATION: PROSPERO reference number: CRD42019134300.


Assuntos
Antibacterianos/uso terapêutico , Metanálise como Assunto , Sepse Neonatal/tratamento farmacológico , Projetos de Pesquisa , Revisões Sistemáticas como Assunto , Protocolos Clínicos , Humanos , Recém-Nascido
14.
PLoS One ; 13(3): e0193924, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29518134

RESUMO

BACKGROUND: During recent years, systematic reviews of observational studies have compared digoxin to no digoxin in patients with atrial fibrillation or atrial flutter, and the results of these reviews suggested that digoxin seems to increase the risk of all-cause mortality regardless of concomitant heart failure. Our objective was to assess the benefits and harms of digoxin for atrial fibrillation and atrial flutter based on randomized clinical trials. METHODS: We searched CENTRAL, MEDLINE, Embase, LILACS, SCI-Expanded, BIOSIS for eligible trials comparing digoxin versus placebo, no intervention, or other medical interventions in patients with atrial fibrillation or atrial flutter in October 2016. Our primary outcomes were all-cause mortality, serious adverse events, and quality of life. Our secondary outcomes were heart failure, stroke, heart rate control, and conversion to sinus rhythm. We performed both random-effects and fixed-effect meta-analyses and chose the more conservative result as our primary result. We used Trial Sequential Analysis (TSA) to control for random errors. We used GRADE to assess the quality of the body of evidence. RESULTS: 28 trials (n = 2223 participants) were included. All were at high risk of bias and reported only short-term follow-up. When digoxin was compared with all control interventions in one analysis, we found no evidence of a difference on all-cause mortality (risk ratio (RR), 0.82; TSA-adjusted confidence interval (CI), 0.02 to 31.2; I2 = 0%); serious adverse events (RR, 1.65; TSA-adjusted CI, 0.24 to 11.5; I2 = 0%); quality of life; heart failure (RR, 1.05; TSA-adjusted CI, 0.00 to 1141.8; I2 = 51%); and stroke (RR, 2.27; TSA-adjusted CI, 0.00 to 7887.3; I2 = 17%). Our analyses on acute heart rate control (within 6 hours of treatment onset) showed firm evidence of digoxin being superior compared with placebo (mean difference (MD), -12.0 beats per minute (bpm); TSA-adjusted CI, -17.2 to -6.76; I2 = 0%) and inferior compared with beta blockers (MD, 20.7 bpm; TSA-adjusted CI, 14.2 to 27.2; I2 = 0%). Meta-analyses on acute heart rate control showed that digoxin was inferior compared with both calcium antagonists (MD, 21.0 bpm; TSA-adjusted CI, -30.3 to 72.3) and with amiodarone (MD, 14.7 bpm; TSA-adjusted CI, -0.58 to 30.0; I2 = 42%), but in both comparisons TSAs showed that we lacked information. Meta-analysis on acute conversion to sinus rhythm showed that digoxin compared with amiodarone reduced the probability of converting atrial fibrillation to sinus rhythm, but TSA showed that we lacked information (RR, 0.54; TSA-adjusted CI, 0.13 to 2.21; I2 = 0%). CONCLUSIONS: The clinical effects of digoxin on all-cause mortality, serious adverse events, quality of life, heart failure, and stroke are unclear based on current evidence. Digoxin seems to be superior compared with placebo in reducing the heart rate, but inferior compared with beta blockers. The long-term effect of digoxin is unclear, as no trials reported long-term follow-up. More trials at low risk of bias and low risk of random errors assessing the clinical effects of digoxin are needed. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42016052935.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Flutter Atrial/tratamento farmacológico , Digoxina/uso terapêutico , Idoso , Amiodarona/uso terapêutico , Viés , Bloqueadores dos Canais de Cálcio/uso terapêutico , Comorbidade , Digoxina/efeitos adversos , Feminino , Insuficiência Cardíaca/prevenção & controle , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Resultado do Tratamento
15.
Syst Rev ; 6(1): 47, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28264715

RESUMO

BACKGROUND: Atrial fibrillation is the most common arrhythmia of the heart with a prevalence of approximately 2% in the western world. Atrial flutter, another arrhythmia, occurs less often with an incidence of approximately 200,000 new patients per year in the USA. Patients with atrial fibrillation and atrial flutter have an increased risk of death and morbidities. The management of atrial fibrillation and atrial flutter is often based on interventions aiming at either a rhythm control strategy or a rate control strategy. The evidence on the comparable effects of these strategies is unclear. This protocol for a systematic review aims at identifying the best overall treatment strategy for atrial fibrillation and atrial flutter. METHODS: This protocol for a systematic review was performed following the recommendations of the Cochrane Collaboration and the eight-step assessment procedure suggested by Jakobsen and colleagues. We plan to include all relevant randomised clinical trials assessing the effects of any rhythm control strategy versus any rate control strategy. We plan to search the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, Science Citation Index Expanded on Web of Science, and BIOSIS to identify relevant trials. Any eligible trial will be assessed and classified as either high risk of bias or low risk of bias, and our conclusions will be based on trials with low risk of bias. The analyses of the extracted data will be performed using Review Manager 5 and Trial Sequential Analysis. For both our primary and secondary outcomes, we will create a 'Summary of Findings' table and use GRADE assessment to assess the quality of the evidence. DISCUSSION: The results of this systematic review have the potential to benefit thousands of patients worldwide as well as healthcare systems and healthcare economy. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42016051433.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Flutter Atrial/tratamento farmacológico , Moduladores de Transporte de Membrana/uso terapêutico , Projetos de Pesquisa , Fibrilação Atrial/fisiopatologia , Flutter Atrial/fisiopatologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Humanos , Bloqueadores dos Canais de Potássio/uso terapêutico , Revisões Sistemáticas como Assunto , Resultado do Tratamento
16.
PLoS One ; 12(10): e0186856, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073191

RESUMO

BACKGROUND: Atrial fibrillation and atrial flutter may be managed by either a rhythm control strategy or a rate control strategy but the evidence on the clinical effects of these two intervention strategies is unclear. Our objective was to assess the beneficial and harmful effects of rhythm control strategies versus rate control strategies for atrial fibrillation and atrial flutter. METHODS: We searched CENTRAL, MEDLINE, Embase, LILACS, Web of Science, BIOSIS, Google Scholar, clinicaltrials.gov, TRIP, EU-CTR, Chi-CTR, and ICTRP for eligible trials comparing any rhythm control strategy with any rate control strategy in patients with atrial fibrillation or atrial flutter published before November 2016. Our primary outcomes were all-cause mortality, serious adverse events, and quality of life. Our secondary outcomes were stroke and ejection fraction. We performed both random-effects and fixed-effect meta-analysis and chose the most conservative result as our primary result. We used Trial Sequential Analysis (TSA) to control for random errors. Statistical heterogeneity was assessed by visual inspection of forest plots and by calculating inconsistency (I2) for traditional meta-analyses and diversity (D2) for TSA. Sensitivity analyses and subgroup analyses were conducted to explore the reasons for substantial statistical heterogeneity. We assessed the risk of publication bias in meta-analyses consisting of 10 trials or more with tests for funnel plot asymmetry. We used GRADE to assess the quality of the body of evidence. RESULTS: 25 randomized clinical trials (n = 9354 participants) were included, all of which were at high risk of bias. Meta-analysis showed that rhythm control strategies versus rate control strategies significantly increased the risk of a serious adverse event (risk ratio (RR), 1.10; 95% confidence interval (CI), 1.02 to 1.18; P = 0.02; I2 = 12% (95% CI 0.00 to 0.32); 21 trials), but TSA did not confirm this result (TSA-adjusted CI 0.99 to 1.22). The increased risk of a serious adverse event did not seem to be caused by any single component of the composite outcome. Meta-analysis showed that rhythm control strategies versus rate control strategies were associated with better SF-36 physical component score (mean difference (MD), 6.93 points; 95% CI, 2.25 to 11.61; P = 0.004; I2 = 95% (95% CI 0.94 to 0.96); 8 trials) and ejection fraction (MD, 4.20%; 95% CI, 0.54 to 7.87; P = 0.02; I2 = 79% (95% CI 0.69 to 0.85); 7 trials), but TSA did not confirm these results. Both meta-analysis and TSA showed no significant differences on all-cause mortality, SF-36 mental component score, Minnesota Living with Heart Failure Questionnaire, and stroke. CONCLUSIONS: Rhythm control strategies compared with rate control strategies seem to significantly increase the risk of a serious adverse event in patients with atrial fibrillation. Based on current evidence, it seems that most patients with atrial fibrillation should be treated with a rate control strategy unless there are specific reasons (e.g., patients with unbearable symptoms due to atrial fibrillation or patients who are hemodynamically unstable due to atrial fibrillation) justifying a rhythm control strategy. More randomized trials at low risk of bias and low risk of random errors are needed. TRIAL REGISTRATION: PROSPERO CRD42016051433.


Assuntos
Fibrilação Atrial/fisiopatologia , Flutter Atrial/fisiopatologia , Causas de Morte , Humanos , Qualidade de Vida
17.
Syst Rev ; 6(1): 71, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381269

RESUMO

BACKGROUND: Atrial fibrillation is the most common arrhythmia of the heart with a prevalence of approximately 2% in the western world. Atrial flutter, another arrhythmia, occurs less often with an incidence of approximately 200,000 new patients per year in the USA. Patients with atrial fibrillation and atrial flutter have an increased risk of death and morbidities. In the management of atrial fibrillation and atrial flutter, it is often necessary to use medical interventions to lower the heart rate. Lowering the heart rate may theoretically prevent the development of heart failure and tachycardia-mediated cardiomyopathy. The evidence on the benefits and harms of digoxin compared with placebo or with other medical interventions is unclear. This protocol for a systematic review aims at identifying the beneficial and harmful effects of digoxin compared with placebo, no intervention, or with other medical interventions for atrial fibrillation and atrial flutter. METHODS: This protocol for a systematic review was conducted following the recommendations of Cochrane and the eight-step assessment procedure suggested by Jakobsen and colleagues. We plan to include all relevant randomised clinical trials comparing digoxin with placebo, no intervention, or with other medical interventions. We plan to search the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, Science Citation Index Expanded on Web of Science, and BIOSIS to identify relevant trials. Any eligible trial will be assessed and classified as either at high risk of bias or low risk of bias, and our primary conclusions will be based on trials with low risk of bias. We will perform our meta-analyses of the extracted data using Review Manager 5.3 and Trial Sequential Analysis ver. 0.9.5.5 beta. For both our primary and secondary outcomes, we will create a 'Summary of Findings' table based on GRADE assessments of the quality of the evidence. DISCUSSION: The results of this systematic review have the potential to benefit millions of patients worldwide as well as healthcare economy. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42016052935.


Assuntos
Fibrilação Atrial/terapia , Flutter Atrial/tratamento farmacológico , Digoxina/uso terapêutico , Insuficiência Cardíaca/prevenção & controle , Humanos , Placebos , Revisões Sistemáticas como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA