RESUMO
The objective of this study was to evaluate the safety, tolerability, pharmacokinetics (PK), and immunogenicity of VIR-2482 in healthy adult subjects. A phase 1, first-in-human, randomized, double-blind, placebo-controlled dose-escalation study was conducted. One hundred participants were allocated to four cohorts (60 mg, 300 mg, 1,200 mg, and 1,800 mg). In each cohort, participants were randomized in a 4:1 ratio (active:placebo) to receive either VIR-2482 or volume-matched placebo by gluteal intramuscular injection. Participants remained at the investigative site under observation for 48 h, and adverse events (AEs) were collected for 56 days. PK and immunogenicity were measured up to 52 weeks post-dose. VIR-2482 was well tolerated at all doses studied. The overall incidence of AEs was comparable between VIR-2482 (68.8%) and placebo (85.0%). Nineteen VIR-2482 (23.8%) and six placebo (30.0%) recipients had Grade 1 or 2 AEs that were considered to be related to the study intervention. There were no treatment-related serious AEs. Injection-site reactions (ISRs) were reported in six (7.5%) VIR-2482 recipients, while no such reactions were reported among the placebo recipients. All ISRs were Grade 1, and there was no relationship with the dose. Median VIR-2482 serum elimination half-life ranged from 56.7 to 70.6 days across cohorts. The serum area under the curve and Cmax were dose-proportional. Nasopharyngeal VIR-2482 concentrations were approximately 2%-5% of serum levels and were less than dose-proportional. The incidence of immunogenicity across all cohorts was 1.3%. Overall, the safety, tolerability, and pharmacokinetic profile of VIR-2482 at doses up to 1,800 mg supported its further investigation as a long-acting antibody for the prevention of influenza A illness. This study has been registered at ClinicalTrials.gov under identifier NCT04033406.
Assuntos
Anticorpos Monoclonais , Influenza Humana , Adulto , Humanos , Anticorpos Monoclonais/efeitos adversos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Voluntários Saudáveis , Método Duplo-CegoRESUMO
Importance: Older patients and those with comorbidities who are infected with SARS-CoV-2 may be at increased risk of hospitalization and death. Sotrovimab is a neutralizing antibody for the treatment of high-risk patients to prevent COVID-19 progression. Objective: To evaluate the efficacy and adverse events of sotrovimab in preventing progression of mild to moderate COVID-19 to severe disease. Design, Setting, and Participants: Randomized clinical trial including 1057 nonhospitalized patients with symptomatic, mild to moderate COVID-19 and at least 1 risk factor for progression conducted at 57 sites in Brazil, Canada, Peru, Spain, and the US from August 27, 2020, through March 11, 2021; follow-up data were collected through April 8, 2021. Interventions: Patients were randomized (1:1) to an intravenous infusion with 500 mg of sotrovimab (n = 528) or placebo (n = 529). Main Outcomes and Measures: The primary outcome was the proportion of patients with COVID-19 progression through day 29 (all-cause hospitalization lasting >24 hours for acute illness management or death); 5 secondary outcomes were tested in hierarchal order, including a composite of all-cause emergency department (ED) visit, hospitalization of any duration for acute illness management, or death through day 29 and progression to severe or critical respiratory COVID-19 requiring supplemental oxygen or mechanical ventilation. Results: Enrollment was stopped early for efficacy at the prespecified interim analysis. Among 1057 patients randomized (median age, 53 years [IQR, 42-62], 20% were ≥65 years of age, and 65% Latinx), the median duration of follow-up was 103 days for sotrovimab and 102 days for placebo. All-cause hospitalization lasting longer than 24 hours or death was significantly reduced with sotrovimab (6/528 [1%]) vs placebo (30/529 [6%]) (adjusted relative risk [RR], 0.21 [95% CI, 0.09 to 0.50]; absolute difference, -4.53% [95% CI, -6.70% to -2.37%]; P < .001). Four of the 5 secondary outcomes were statistically significant in favor of sotrovimab, including reduced ED visit, hospitalization, or death (13/528 [2%] for sotrovimab vs 39/529 [7%] for placebo; adjusted RR, 0.34 [95% CI, 0.19 to 0.63]; absolute difference, -4.91% [95% CI, -7.50% to -2.32%]; P < .001) and progression to severe or critical respiratory COVID-19 (7/528 [1%] for sotrovimab vs 28/529 [5%] for placebo; adjusted RR, 0.26 [95% CI, 0.12 to 0.59]; absolute difference, -3.97% [95% CI, -6.11% to -1.82%]; P = .002). Adverse events were infrequent and similar between treatment groups (22% for sotrovimab vs 23% for placebo); the most common events were diarrhea with sotrovimab (n = 8; 2%) and COVID-19 pneumonia with placebo (n = 22; 4%). Conclusions and Relevance: Among nonhospitalized patients with mild to moderate COVID-19 and at risk of disease progression, a single intravenous dose of sotrovimab, compared with placebo, significantly reduced the risk of a composite end point of all-cause hospitalization or death through day 29. The findings support sotrovimab as a treatment option for nonhospitalized, high-risk patients with mild to moderate COVID-19, although efficacy against SARS-CoV-2 variants that have emerged since the study was completed is unknown. Trial Registration: ClinicalTrials.gov Identifier: NCT04545060.
Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Doença Aguda , Adulto , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/uso terapêutico , Antivirais/administração & dosagem , Antivirais/uso terapêutico , COVID-19/mortalidade , Progressão da Doença , Hospitalização , Humanos , Infusões Intravenosas , Pessoa de Meia-Idade , Respiração Artificial , Resultado do TratamentoRESUMO
BACKGROUND: Bupropion (BUP) is a chiral antidepressant and smoking cessation aide with benefits and side effects correlated with parent and active metabolite concentrations. BUP is metabolized by CYP2B6, CYP2C19, and CYP3A4 to hydroxy-BUP (OH-BUP) as well as by 11ß-hydroxysteroid dehydrogenase-1 and aldo-keto reductases to threohydrobupropion (Threo) and erythrohydrobupropion (Erythro), respectively. As pregnancy alters the activity of drug-metabolizing enzymes, the authors hypothesized that BUP metabolism and BUP metabolite concentrations would be altered during pregnancy, potentially affecting the efficacy and safety of BUP in pregnant women. METHODS: Pregnant women (n = 8) taking BUP chronically were enrolled, and steady-state plasma samples and dosing interval urine samples were collected during pregnancy and postpartum. Maternal and umbilical cord venous blood samples were collected at delivery from 3 subjects, and cord blood/maternal plasma concentration ratios were calculated. The concentrations of BUP stereoisomers and their metabolites were measured. Paired t tests were used to compare pharmacokinetic parameters during pregnancy and postpartum. RESULTS: No significant changes were observed in the steady-state plasma concentrations, metabolite to parent ratios, formation clearances, or renal clearance of any of the compounds during pregnancy when compared with postpartum. The umbilical cord venous plasma concentrations of BUP and its metabolites were 30%-60% lower than maternal plasma concentrations. CONCLUSIONS: This study showed that there are no clinically meaningful differences in the stereoselective disposition of BUP or its metabolites during pregnancy, indicating that dose adjustment during pregnancy may not be necessary. The results also showed that the placenta provides a partial barrier for bupropion and its metabolite distribution to the fetus, with possible placental efflux transport of bupropion and its metabolites.
Assuntos
Bupropiona , Placenta , Antidepressivos/metabolismo , Bupropiona/farmacocinética , Feminino , Humanos , Placenta/metabolismo , Período Pós-Parto , GravidezRESUMO
Methamphetamine is one of the most abused illicit drugs with roughly 1.2 million users in the United States alone. A large portion of methamphetamine and its metabolites is eliminated by the kidney with renal clearance larger than glomerular filtration clearance. Yet the mechanism of active renal secretion is poorly understood. The goals of this study were to characterize the interaction of methamphetamine and its major metabolites with organic cation transporters (OCTs) and multidrug and toxin extrusion (MATE) transporters and to identify the major transporters involved in the disposition of methamphetamine and its major metabolites, amphetamine and para-hydroxymethamphetamine (p-OHMA). We used cell lines stably expressing relevant transporters to show that methamphetamine and its metabolites inhibit human OCTs 1-3 (hOCT1-3) and hMATE1/2-K with the greatest potencies against hOCT1 and hOCT2. Methamphetamine and amphetamine are substrates of hOCT2, hMATE1, and hMATE2-K, but not hOCT1 and hOCT3. p-OHMA is transported by hOCT1-3 and hMATE1, but not hMATE2-K. In contrast, organic anion transporters 1 and 3 do not interact with or transport these compounds. Methamphetamine and its metabolites exhibited complex interactions with hOCT1 and hOCT2, suggesting the existence of multiple binding sites. Our studies suggest the involvement of the renal OCT2/MATE pathway in tubular secretion of methamphetamine and its major metabolites and the potential of drug-drug interactions with substrates or inhibitors of the OCTs. This information may be considered when prescribing medications to suspected or known abusers of methamphetamine to mitigate the risk of increased toxicity or reduced therapeutic efficacy.
Assuntos
Transporte Biológico/fisiologia , Metanfetamina/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Anfetamina/metabolismo , Sítios de Ligação/fisiologia , Linhagem Celular , Interações Medicamentosas/fisiologia , Células HEK293 , Humanos , Rim/metabolismoRESUMO
Typically, concentration-response curves are based upon nominal inducer concentrations for in-vitro-to-in-vivo extrapolation of CYP3A4 induction. The limitation of this practice is that it assumes the hepatocyte culture model is a static system. We assessed whether correcting for: 1) changes in perpetrator concentration in the induction medium during the incubation period, 2) perpetrator binding to proteins in the induction medium, and 3) nonspecific binding of perpetrator can improve the accuracy of CYP3A4 induction predictions. Of the seven compounds used in this evaluation, significant parent loss and nonspecific binding were observed for rifampicin (29.3-38.3%), pioglitazone (64.3-78.6%), and rosiglitazone (57.1-75.5%). As a result, the free measured EC50 values (EC50u) of pioglitazone, rosiglitazone, and rifampicin were significantly lower than the nominal EC50 values. In general, the accuracy of the induction predictions, using multiple static models, improved when corrections were made for measured medium concentrations, medium protein binding, and nonspecific binding of the perpetrator, as evidenced by 18-29% reductions in the root mean square error. The relative induction score model performed better than the basic static and mechanistic static models, resulting in lower prediction error and no false-positive or false-negative predictions. However, even when the EC50u value was used, the induction prediction for bosentan, which is a substrate of organic anion transporter proteins, was overpredicted by approximately 2-fold. Accounting for the ratio of unbound intracellular concentrations to unbound medium concentrations (Kpuu,in vitro) (0.5-7.5) and the predicted multiple-dose Kpuu,in vivo (0.6) for bosentan resulted in induction predictions within 35% of the observed interaction.
Assuntos
Indutores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/biossíntese , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Criopreservação , Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/farmacocinética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Indução Enzimática/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Cinética , Pioglitazona , Rifampina/farmacocinética , Rifampina/farmacologia , Rosiglitazona , Tiazolidinedionas/farmacocinética , Tiazolidinedionas/farmacologiaRESUMO
Bupropion is a widely used antidepressant, smoking cessation aid, and weight-loss therapy. It is administered as a racemic mixture, but the pharmacokinetics and activity of bupropion are stereoselective. The activity and side effects of bupropion are attributed to bupropion and its metabolites S,S- and R,R-OH-bupropion, threohydrobupropion, and erythrohydrobupropion. Yet the stereoselective metabolism in vitro and the enzymes contributing to the stereoselective disposition of bupropion have not been characterized. In humans, the fraction of bupropion metabolized (fm) to the CYP2B6 probe metabolite OH-bupropion is 5-16%, but ticlopidine increases bupropion exposure by 61%, suggesting a 40% CYP2B6 and/or CYP2C19 fm for bupropion. Yet, the CYP2C19 contribution to bupropion clearance has not been defined, and the enzymes contributing to overall bupropion metabolite formation have not been fully characterized. The aim of this study was to characterize the stereoselective metabolism of bupropion in vitro to explain the stereoselective pharmacokinetics and the effect of drug-drug interactions (DDIs) and CYP2C19 pharmacogenetics on bupropion exposure. The data predict that threohydrobupropion accounts for 50 and 82%, OH-bupropion for 34 and 12%, erythrohydrobupropion for 8 and 4%, and 4'-OH-bupropion for 8 and 2% of overall R- and S-bupropion clearance, respectively. The fm,CYP2B6 was predicted to be 21%, and the fm,CYP2C19, 6% for racemic bupropion. Importantly, ticlopidine was found to inhibit all metabolic pathways of bupropion in vitro, including threohydrobupropion, erythrohydrobupropion, and 4'OH-bupropion formation, explaining the in vivo DDI. The stereoselective pharmacokinetics of bupropion were quantitatively explained by the in vitro metabolic clearances and in vivo interconversion between bupropion stereoisomers.
Assuntos
Antidepressivos de Segunda Geração/farmacocinética , Bupropiona/análogos & derivados , Bupropiona/farmacocinética , Humanos , Técnicas In Vitro , EstereoisomerismoRESUMO
Modeling and simulation of drug disposition has emerged as an important tool in drug development, clinical study design and regulatory review, and the number of physiologically based pharmacokinetic (PBPK) modeling related publications and regulatory submissions have risen dramatically in recent years. However, the extent of use of PBPK modeling by researchers, and the public availability of models has not been systematically evaluated. This review evaluates PBPK-related publications to 1) identify the common applications of PBPK modeling; 2) determine ways in which models are developed; 3) establish how model quality is assessed; and 4) provide a list of publically available PBPK models for sensitive P450 and transporter substrates as well as selective inhibitors and inducers. PubMed searches were conducted using the terms "PBPK" and "physiologically based pharmacokinetic model" to collect published models. Only papers on PBPK modeling of pharmaceutical agents in humans published in English between 2008 and May 2015 were reviewed. A total of 366 PBPK-related articles met the search criteria, with the number of articles published per year rising steadily. Published models were most commonly used for drug-drug interaction predictions (28%), followed by interindividual variability and general clinical pharmacokinetic predictions (23%), formulation or absorption modeling (12%), and predicting age-related changes in pharmacokinetics and disposition (10%). In total, 106 models of sensitive substrates, inhibitors, and inducers were identified. An in-depth analysis of the model development and verification revealed a lack of consistency in model development and quality assessment practices, demonstrating a need for development of best-practice guidelines.
Assuntos
Simulação por Computador , Interações Medicamentosas/fisiologia , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Animais , Humanos , FarmacocinéticaRESUMO
BACKGROUND AND OBJECTIVE: Sotrovimab 500 mg administered by a single intravenous (IV) infusion has been granted special approval for emergency use in Japan for treatment of SARS-CoV-2 infection in adults and children aged ≥ 12 years weighing ≥ 40 kg. This Phase 1, single-dose study investigated the pharmacokinetics, safety, and tolerability of IV or intramuscular (IM) sotrovimab 500 mg doses versus placebo in healthy Japanese and Caucasian volunteers. METHODS: This was a two-part, Phase 1, randomized, placebo-controlled, single-blind study. In Part 1, participants received a single sotrovimab 500 mg IV infusion or matching placebo on Day 1. In Part 2, participants received a single sotrovimab 500 mg IM dose or matching placebo on Day 1, administered as two 4 mL injections. RESULTS: There was no effect of ethnicity on the peak or total serum exposure of IV sotrovimab through Week 18; after adjusting for body weight, the point estimate and 90 % confidence interval for the ratio of total exposure between Japanese and Caucasian participants fell within conventional bioavailability bounds (80-125%). Geometric mean Cmax and AUClast following a single IM administration of sotrovimab were higher in Japanese participants compared with Caucasian participants, even after adjustment for body weight. Overall, a single IV or IM dose of sotrovimab was well tolerated by both Japanese and Caucasian participants. CONCLUSIONS: After adjusting for body weight, exposures following a single IV dose of sotrovimab 500 mg were similar between Japanese and Caucasian participants, and higher in Japanese participants following IM administration. Higher exposures were not associated with any safety signals. TRIAL REGISTRATION: ClinicalTrials.Gov: NCT04988152.
Assuntos
Anticorpos Neutralizantes , COVID-19 , Adulto , Criança , Humanos , Japão/epidemiologia , Voluntários Saudáveis , Método Simples-Cego , SARS-CoV-2 , Anticorpos Monoclonais Humanizados/efeitos adversos , Peso Corporal , Método Duplo-CegoRESUMO
The aim of this study was to evaluate the contribution of metabolites to drug-drug interactions (DDI) using the inhibition of CYP2C19 and CYP3A4 by omeprazole and its metabolites as a model. Of the metabolites identified in vivo, 5-hydroxyomeprazole, 5'-O-desmethylomeprazole, omeprazole sulfone, and carboxyomeprazole had a metabolite to parent area under the plasma concentration-time curve (AUC(m)/AUC(p)) ratio ≥ 0.25 when either total or unbound concentrations were measured after a single 20-mg dose of omeprazole in a cocktail. All of the metabolites inhibited CYP2C19 and CYP3A4 reversibly. In addition omeprazole, omeprazole sulfone, and 5'-O-desmethylomeprazole were time dependent inhibitors (TDI) of CYP2C19, whereas omeprazole and 5'-O-desmethylomeprazole were found to be TDIs of CYP3A4. The in vitro inhibition constants and in vivo plasma concentrations were used to evaluate whether characterization of the metabolites affected DDI risk assessment. Identifying omeprazole as a TDI of both CYP2C19 and CYP3A4 was the most important factor in DDI risk assessment. Consideration of reversible inhibition by omeprazole and its metabolites would not identify DDI risk with CYP3A4, and with CYP2C19, reversible inhibition values would only identify DDI risk if the metabolites were included in the assessment. On the basis of inactivation data, CYP2C19 and CYP3A4 inhibition by omeprazole would be sufficient to identify risk, but metabolites were predicted to contribute 30-63% to the in vivo hepatic interactions. Therefore, consideration of metabolites may be important in quantitative predictions of in vivo DDIs. The results of this study show that, although metabolites contribute to in vivo DDIs, their relative abundance in circulation or logP values do not predict their contribution to in vivo DDI risk.
Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/farmacologia , Omeprazol/análogos & derivados , Omeprazol/metabolismo , Omeprazol/farmacologia , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP3A , Interações Medicamentosas , Inibidores Enzimáticos/metabolismo , HumanosRESUMO
Sotrovimab is a recombinant human monoclonal antibody that has been shown to prevent progression to hospitalization or death in non-hospitalized high-risk patients with mild to moderate coronavirus disease 2019 following either intravenous (i.v.) or intramuscular (i.m.) administration. Population pharmacokinetic (PopPK) and exposure-response (ER) analyses were performed to characterize single dose sotrovimab pharmacokinetics (PK) and the relationship between exposure and response (probability of progression), as well as covariates that may contribute to between-participant variability in sotrovimab PK and efficacy following i.v. or i.m. administration. Sotrovimab PK was described by a two-compartment model with linear elimination; i.m. absorption was characterized by a sigmoid absorption model. PopPK covariate analysis led to the addition of the effect of body weight on systemic clearance and peripheral volume of distribution, sex on i.m. bioavailability and first-order absorption rate (KA), and body mass index on KA. However, the magnitude of covariate effect was not pronounced and was therefore not expected to be clinically relevant based on available data to date. For ER analysis, sotrovimab exposure measures were predicted using the final PopPK model. An ER model was developed using the exposure measure of sotrovimab concentration at 168 h that described the relationship between exposure and probability of progression within the ER dataset for COMET-TAIL. The number of risk factors (≤1 vs. >1) was incorporated as an additive shift on the model-estimated placebo response but had no impact on overall drug response. Limitations in the ER model may prevent generalization of these results to describe the sotrovimab exposure-progression relationship across severe acute respiratory syndrome-coronavirus 2 variants.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Monoclonais HumanizadosRESUMO
Background: Five hundred milligrams of intravenous (IV) sotrovimab has been shown to be well tolerated and efficacious against pre-Omicron strains in treating patients with mild to moderate coronavirus disease 2019 (COVID-19) at high risk for disease progression. Methods: This was an open-label, single-arm substudy of phase 3 COMET-TAIL (NCT04913675) assessing the safety and tolerability of a 2000 mg IV dose of sotrovimab. Symptomatic patients (aged ≥18 years) with COVID-19 at high risk for progression were enrolled from June 30 through July 11, 2022, when Omicron BA.5, BA.2.12.1, and BA.4 were the predominant circulating variants in the United States. The primary end point was the occurrence of adverse events (AEs), serious AEs (SAEs), AEs of special interest, and COVID-19 disease-related events (DREs) through day 8. Safety, pharmacokinetics, viral load, and hospitalization >24 hours for acute management of illness or death through day 29 were assessed. Results: All participants (n = 81) were Hispanic, 58% were female, and 51% were aged ≥55 years. Through day 8, no AEs, including infusion-related reactions or hypersensitivity, were reported; 2 participants reported DREs (mild cough, n = 2). One SAE (acute myocardial infarction), which was considered unrelated to sotrovimab or COVID-19 by the investigator, occurred on day 27 and was the only hospitalization reported. Maximum serum concentration (geometric mean) was 745.9â µg/mL. Viral load decreased from baseline through day 29; only 2 (3%) participants had a persistently high viral load (≥4.1 log10 copies/mL) at day 8. Conclusions: Two thousand milligrams of IV sotrovimab was well tolerated, with no safety signals observed. Trial registration: ClinicalTrials.gov Identifier: NCT04913675.
RESUMO
Background: Convenient administration of coronavirus disease 2019 (COVID-19) treatment in community settings is desirable. Sotrovimab is a pan-sarbecovirus dual-action monoclonal antibody formulated for intravenous (IV) or intramuscular (IM) administration for early treatment of mild/moderate COVID-19. Method: This multicenter phase 3 study based on a randomized open-label design tested the noninferiority of IM to IV administration according to an absolute noninferiority margin of 3.5%. From June to August 2021, patients aged ≥12 years with COVID-19, who were neither hospitalized nor receiving supplemental oxygen but were at high risk for progression, were randomized 1:1:1 to receive sotrovimab as a single 500-mg IV infusion or a 500- or 250-mg IM injection. The primary composite endpoint was progression to (1) all-cause hospitalization for >24 hours for acute management of illness or (2) all-cause death through day 29. Results: Sotrovimab 500â mg IM was noninferior to 500â mg IV: 10 (2.7%) of 376 participants vs 5 (1.3%) of 378 met the primary endpoint, respectively (absolute adjusted risk difference, 1.06%; 95% CI, -1.15% to 3.26%). The 95% CI upper limit was lower than the prespecified noninferiority margin of 3.5%. The 250-mg IM group was discontinued early because of the greater proportion of hospitalizations vs the 500-mg groups. Serious adverse events occurred in <1% to 2% of participants across groups. Four participants experienced serious disease-related events and died (500â mg IM, 2/393, <1%; 250â mg IM, 2/195, 1%). Conclusions: Sotrovimab 500-mg IM injection was well tolerated and noninferior to IV administration. IM administration could expand outpatient treatment access for COVID-19. Clinical Trials Registration: ClinicalTrials.gov: NCT04913675.
RESUMO
Bupropion is a widely used antidepressant and smoking cessation aid and a strong inhibitor of CYP2D6 in vivo. Bupropion is administered as a racemic mixture of R- and S-bupropion and has stereoselective pharmacokinetics. Four primary metabolites of bupropion, threo- and erythro-hydrobupropion and R,R- and S,S-OH-bupropion, circulate at higher concentrations than the parent drug and are believed to contribute to the efficacy and side effects of bupropion as well as to the CYP2D6 inhibition. However, bupropion and its metabolites are only weak inhibitors of CYP2D6 in vitro, and the magnitude of the in vivo drug-drug interactions (DDI) caused by bupropion cannot be explained by the in vitro data even when CYP2D6 inhibition by the metabolites is accounted for. The aim of this study was to quantitatively explain the in vivo CYP2D6 DDI magnitude by in vitro DDI data. Bupropion and its metabolites were found to inhibit CYP2D6 stereoselectively with up to 10-fold difference in inhibition potency between enantiomers. However, the reversible inhibition or active uptake into hepatocytes did not explain the in vivo DDIs. In HepG2 cells and in plated human hepatocytes bupropion and its metabolites were found to significantly downregulate CYP2D6 mRNA in a concentration dependent manner. The in vivo DDI was quantitatively predicted by significant down-regulation of CYP2D6 mRNA and reversible inhibition of CYP2D6 by bupropion and its metabolites. This study is the first example of a clinical DDI resulting from CYP down-regulation and first demonstration of a CYP2D6 interaction resulting from transcriptional regulation.
Assuntos
Bupropiona/farmacologia , Citocromo P-450 CYP2D6/metabolismo , Bupropiona/metabolismo , Cromatografia Líquida , Regulação para Baixo , Interações Medicamentosas , Células Hep G2 , Humanos , Técnicas In Vitro , Abandono do Hábito de Fumar , Espectrometria de Massas em TandemRESUMO
Bupropion is a widely used antidepressant and the recommended CYP2B6 probe drug. However, current understanding of bupropion elimination pathways is limited. Bupropion has three active circulating metabolites, OH-bupropion, threohydrobupropion, and erythrohydrobupropion, but together with bupropion these metabolites and their conjugates in urine represent only 23% of the dose, and the majority of the elimination pathways of bupropion result in uncharacterized metabolites. The aim of this study was to determine the structures of the uncharacterized bupropion metabolites using human clinical samples and in vitro incubations. Three new metabolites, 4'-OH-bupropion, erythro-4'-OH-hydrobupropion, and threo-4'-OH-hydrobupropion, were detected in human liver microsome incubations and were isolated from human urine. The structures of the metabolites were confirmed via comparison of UV absorbance, NMR spectra, and mass spectral data to those of the synthesized standards. In total, these metabolites represented 24% of the drug related material excreted in urine.