Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628308

RESUMO

Radiation-induced loss of the hematopoietic stem cell progenitor population compromises bone marrow regeneration and development of mature blood cells. Failure to rescue bone marrow functions results in fatal consequences from hematopoietic injury, systemic infections, and sepsis. So far, bone marrow transplant is the only effective option, which partially minimizes radiation-induced hematopoietic toxicities. However, a bone marrow transplant will require HLA matching, which will not be feasible in large casualty settings such as a nuclear accident or an act of terrorism. In this study we demonstrated that human peripheral blood mononuclear cell-derived myeloid committed progenitor cells can mitigate radiation-induced bone marrow toxicity and improve survival in mice. These cells can rescue the recipient's hematopoietic stem cells from radiation toxicity even when administered up to 24 h after radiation exposure and can be subjected to allogenic transplant without GVHD development. Transplanted cells deliver sEVs enriched with regenerative and immune-modulatory paracrine signals to mitigate radiation-induced hematopoietic toxicity. This provides a natural polypharmacy solution against a complex injury process. In summary, myeloid committed progenitor cells can be prepared from blood cells as an off-the-shelf alternative to invasive bone marrow harvesting and can be administered in an allogenic setting to mitigate hematopoietic acute radiation syndrome.


Assuntos
Síndrome Aguda da Radiação , Células-Tronco de Sangue Periférico , Animais , Medula Óssea , Células-Tronco Hematopoéticas , Humanos , Leucócitos Mononucleares , Camundongos
2.
Gastroenterology ; 158(5): 1433-1449.e27, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31786131

RESUMO

BACKGROUND & AIMS: Prolactin (PRL) signaling is up-regulated in hormone-responsive cancers. The PRL receptor (PRLR) is a class I cytokine receptor that signals via the Janus kinase (JAK)-signal transducer and activator of transcription and mitogen-activated protein kinase pathways to regulate cell proliferation, migration, stem cell features, and apoptosis. Patients with pancreatic ductal adenocarcinoma (PDAC) have high plasma levels of PRL. We investigated whether PRLR signaling contributes to the growth of pancreatic tumors in mice. METHODS: We used immunohistochemical analyses to compare levels of PRL and PRLR in multitumor tissue microarrays. We used structure-based virtual screening and fragment-based drug discovery to identify compounds likely to bind PRLR and interfere with its signaling. Human pancreatic cell lines (AsPC-1, BxPC-3, Panc-1, and MiaPaCa-2), with or without knockdown of PRLR (clustered regularly interspaced short palindromic repeats or small hairpin RNA), were incubated with PRL or penfluridol and analyzed in proliferation and spheroid formation. C57BL/6 mice were given injections of UNKC-6141 cells, with or without knockdown of PRLR, into pancreas, and tumor development was monitored for 4 weeks, with some mice receiving penfluridol treatment for 21 days. Human pancreatic tumor tissues were implanted into interscapular fat pads of NSG mice, and mice were given injections of penfluridol daily for 28 days. Nude mice were given injections of Panc-1 cells, xenograft tumors were grown for 2 weeks, and mice were then given intraperitoneal penfluridol for 35 days. Tumors were collected from mice and analyzed by histology, immunohistochemistry, and immunoblots. RESULTS: Levels of PRLR were increased in PDAC compared with nontumor pancreatic tissues. Incubation of pancreatic cell lines with PRL activated signaling via JAK2-signal transducer and activator of transcription 3 and extracellular signal-regulated kinase, as well as formation of pancospheres and cell migration; these activities were not observed in cells with PRLR knockdown. Pancreatic cancer cells with PRLR knockdown formed significantly smaller tumors in mice. We identified several diphenylbutylpiperidine-class antipsychotic drugs as agents that decreased PRL-induced JAK2 signaling; incubation of pancreatic cancer cells with these compounds reduced their proliferation and formation of panco spheres. Injections of 1 of these compounds, penfluridol, slowed the growth of xenograft tumors in the different mouse models, reducing proliferation and inducing autophagy of the tumor cells. CONCLUSIONS: Levels of PRLR are increased in PDAC, and exposure to PRL increases proliferation and migration of pancreatic cancer cells. Antipsychotic drugs, such as penfluridol, block PRL signaling in pancreatic cancer cells to reduce their proliferation, induce autophagy, and slow the growth of xenograft tumors in mice. These drugs might be tested in patients with PDAC.


Assuntos
Antipsicóticos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Penfluridol/farmacologia , Prolactina/metabolismo , Receptores da Prolactina/antagonistas & inibidores , Animais , Antipsicóticos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Técnicas de Silenciamento de Genes , Humanos , Injeções Intraperitoneais , Janus Quinase 2/metabolismo , Masculino , Camundongos , Pâncreas/patologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Penfluridol/uso terapêutico , Prolactina/sangue , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Carcinog ; 58(8): 1400-1409, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020708

RESUMO

We previously reported that ionizing radiation (IR) mediates cell death through the induction of CUGBP elav-like family member 2 (CELF2), a tumor suppressor. CELF2 is an RNA binding protein that modulates mRNA stability and translation. Since IR induces autophagy, we hypothesized that CELF2 regulates autophagy-mediated colorectal cancer (CRC) cell death. For clinical relevance, we determined CELF2 levels in The Cancer Genome Atlas (TCGA). Role of CELF2 in radiation response was carried out in CRC cell lines by immunoblotting, immunofluorescence, autophagic vacuole analyses, RNA stability assay, quantitative polymerase chain reaction and electron microscopy. In vivo studies were performed in a xenograft tumor model. TCGA analyses demonstrated that compared to normal tissue, CELF2 is expressed at significantly lower levels in CRC, and is associated with better overall 5-year survival in patients receiving radiation. Mechanistically, CELF2 increased levels of critical components of the autophagy cascade including Beclin-1, ATG5, and ATG12 by modulating mRNA stability. CELF2 also increased autophagic flux in CRC. IR significantly induced autophagy in CRC which correlates with increased levels of CELF2 and autophagy associated proteins. Silencing CELF2 with siRNA, mitigated IR induced autophagy. Moreover, knockdown of CELF2 in vivo conferred tumor resistance to IR. These studies elucidate an unrecognized role for CELF2 in inducing autophagy and potentiating the effects of radiotherapy in CRC.


Assuntos
Autofagia/fisiologia , Proteínas CELF/metabolismo , Sobrevivência Celular/efeitos da radiação , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Proteínas CELF/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células HCT116 , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Proteínas do Tecido Nervoso/genética , Prognóstico , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Radiação Ionizante , Transplante Heterólogo
4.
Arch Intern Med Res ; 7(1): 1-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605826

RESUMO

Background: Radical excision (RE) for rectal cancer carries a higher risk of mortality and morbidity, while local excision (LE) could decrease these postoperative risks. However, the long-term benefit of LE is still debatable. Aim: To study the effectiveness of LE versus RE in T1 and T2 rectal cancer. Methods: A systematic review and meta-analysis was conducted using key databases like PubMed and ClinicalTrials.gov. Only cohort studies and randomized controlled trials were included. RevMan 5.4 tool was used for data analysis. Both clinical and statistical heterogeneity of the studies were assessed, and I2 >75% was considered as highly heterogeneous. The primary outcomes being measured were 5-year overall survival (OS) and 5-year disease free survival (DFS). A subgroup analysis of patients with T1-only was also conducted, without adjuvant chemo/radiotherapy. Results: A total of 18 studies were included for final meta-analysis. Four were RCTs, while the other 15 were retrospective cohort studies. One included study had data from both RCT and non-RCT study groups. Nine studies were multicentered or national studies while nine were unicentral.There was no difference in risk ratio (RR) between OS: RR 0.95, 95% Confidence Interval (CI) [0.91, 0.99] and DFS: RR 0.93, 95% CI [0.87, 1.01]. There were lower hazards ratios in OS: RR 1.41, 95% CI [1.14, 1.74] and DFS: RR 1.95, 95% CI [1.36, 2.78] with radical, as compared to LE. Lower recurrence rate was associated with RE. Random effect model was used due to clinical heterogeneity between studies (different surgical procedures, tumor staging, adjuvant chemo or radiotherapy). Conclusions: LE for early-stage rectal cancer has lower 5-year OS and DFS than RE, with higher local recurrence rate. However, LE is associated with lower early postoperative mortality, morbidity and length of stay as compared to RE.

5.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106083

RESUMO

Radiosensitivity, the susceptibility of cells to ionizing radiation, plays a critical role in understanding the effects of radiation therapy and exposure on tissue health and regeneration. Identifying characteristics that predict how a patient may respond to radiotherapy enables clinicians to maximize the therapeutic window. Limited clinical data suggested a difference in male and female radiotherapy outcomes. Radiotherapy for gastrointestinal malignancy is still a challenge due to intestinal sensitivity to radiation toxicity. In this manuscript, we demonstrated sex-specific differences in intestinal epithelial radiosensitivity. In mice models of abdominal irradiation, we observed a significant increase in oxidative stress and injury in males compared to females. Lgr5+ve intestinal stem cells from male mice showed higher sensitivity to radiation-induced toxicity. However, sex-specific differences in intestinal radiosensitivity are not dependent on sex hormones as we demonstrated similar sex-specific radiosensitivity differences in pediatric mice. In an ex-vivo study, we found that human patient-derived intestinal organoids (PID) derived from males showed higher sensitivity to irradiation compared to females as evidenced by loss of budding crypt, organoid size, and membrane integrity. Transcriptomic analysis of human Lgr5+ intestinal stem cells suggested radiation induced upregulation of mitochondrial oxidative metabolism in males compared to females' possible mechanism for radiosensitivity differences.

6.
Cells ; 13(1)2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-38201250

RESUMO

Tissue radiosensitivity plays a critical role in the overall outcome of radiation therapy. Identifying characteristics that predict how a patient may respond to radiotherapy enables clinicians to maximize the therapeutic window. Limited clinical data have suggested a difference in male and female radiotherapy outcomes. Radiotherapy for gastrointestinal malignancy is still a challenge due to intestinal sensitivity to radiation toxicity. In this manuscript, we demonstrated sex-specific differences in intestinal epithelial radiosensitivity. In a mouse model of abdominal irradiation, we observed a significant increase in oxidative stress and injury in males compared to females. Lgr5+ve intestinal stem cells from male mice showed higher sensitivity to radiation-induced toxicity. However, sex-specific differences in intestinal radiosensitivity were not dependent on sex hormones, as we demonstrated similar sex-specific radiosensitivity differences in pre-pubescent mice. In an ex vivo study, we found that patient-derived intestinal organoid (PID) from males showed higher sensitivity to radiation compared to females as evident from loss of budding crypts, organoid size, and membrane integrity. Transcriptomic analysis of human Lgr5+ intestinal stem cells suggested radiation-induced upregulation of mitochondrial oxidative metabolism in males compared to females, a possible mechanism for radiosensitivity differences.


Assuntos
Respiração Celular , Lesões por Radiação , Humanos , Animais , Feminino , Masculino , Camundongos , Divisão Celular , Modelos Animais de Doenças , Tolerância a Radiação , Receptores Acoplados a Proteínas G , Células-Tronco
7.
Biomedicines ; 10(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740264

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC), two components of inflammatory bowel disease (IBD), are painful conditions that affect children and adults. Despite substantial research, there is no permanent cure for IBD, and patients face an increased risk of colon cancer. Dietary fiber's health advantages have been thoroughly investigated, and it is recommended for its enormous health benefits. This review article discusses the importance of appropriate fiber intake in managing IBD, emphasizing how optimal fiber consumption can significantly help IBD patients.

8.
Cancers (Basel) ; 14(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35740672

RESUMO

The field of cancer research is famous for its incremental steps in improving therapy. The consistent but slow rate of improvement is greatly due to its meticulous use of consistent cancer biology models. However, as we enter an era of increasingly personalized cancer care, including chemo and radiotherapy, our cancer models must be equally able to be applied to all individuals. Patient-derived organoid (PDO) and organ-in-chip (OIC) models based on the micro-physiological bioengineered platform have already been considered key components for preclinical and translational studies. Accounting for patient variability is one of the greatest challenges in the crossover from preclinical development to clinical trials and patient derived organoids may offer a steppingstone between the two. In this review, we highlight how incorporating PDO's and OIC's into the development of cancer therapy promises to increase the efficiency of our therapeutics.

9.
Electroanalysis ; 34(12): 1961-1975, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37539083

RESUMO

We report an in-plane extended nanopore Coulter counter (XnCC) chip fabricated in a thermoplastic via imprinting. The fabrication of the sensor utilized both photolithography and focused ion beam milling to make the microfluidic network and the in-plane pore sensor, respectively, in Si from which UV resin stamps were generated followed by thermal imprinting to produce the final device in the appropriate plastic (cyclic olefin polymer, COP). As an example of the utility of this in-plane extended nanopore sensor, we enumerated SARS-CoV-2 viral particles (VPs) affinity-selected from saliva and extracellular vesicles (EVs) affinity-selected from plasma samples secured from mouse models exposed to different ionizing radiation doses.

10.
Cells ; 10(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430424

RESUMO

The new strain of coronavirus (severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)) emerged in 2019 and hence is often referred to as coronavirus disease 2019 (COVID-19). This disease causes hypoxic respiratory failure and acute respiratory distress syndrome (ARDS), and is considered as the cause of a global pandemic. Very limited reports in addition to ex vivo model systems are available to understand the mechanism of action of this virus, which can be used for testing of any drug efficacy against virus infectivity. COVID-19 induces tissue stem cell loss, resulting inhibition of epithelial repair followed by inflammatory fibrotic consequences. Development of clinically relevant models is important to examine the impact of the COVID-19 virus in tissue stem cells among different organs. In this review, we discuss ex vivo experimental models available to study the effect of COVID-19 on tissue stem cells.


Assuntos
COVID-19/patologia , Modelos Teóricos , Células-Tronco/patologia , Células Cultivadas , Humanos
11.
Stem Cell Res Ther ; 12(1): 63, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33451351

RESUMO

BACKGROUND: Radiation-induced rectal epithelial damage is a very common side effect of pelvic radiotherapy and often compromise the life quality and treatment outcome in patients with pelvic malignancies. Unlike small bowel and colon, effect of radiation in rectal stem cells has not been explored extensively. Here we demonstrate that Lgr5-positive rectal stem cells are radiosensitive and organoid-based transplantation of rectal stem cells mitigates radiation damage in rectum. METHODS: C57Bl6 male mice (JAX) at 24 h were exposed to pelvic irradiation (PIR) to determine the radiation effect in pelvic epithelium. Effect of PIR on Lgr5-positive rectal stem cells (RSCs) was determined in Lgr5-EGFP-Cre-ERT2 mice exposed to PIR. Effect of PIR or clinically relevant fractionated PIR on regenerative response of Lgr5-positive RSCs was examined by lineage tracing assay using Lgr5-eGFP-IRES-CreERT2; Rosa26-CAG-tdTomato mice with tamoxifen administration to activate Cre recombinase and thereby marking the ISC and their respective progeny. Ex vivo three-dimensional organoid cultures were developed from Lgr5-EGFP-Cre-ERT2 mice. Organoid growth was determined by quantifying the budding crypt/total crypt ratio. Organoids from Lgr5-EGFP-ires-CreERT2-TdT mice were transplanted in C57Bl6 male mice exposed to PIR. Engraftment and repopulation of Lgr5-positive RSCs were determined after tamoxifen administration to activate Cre recombinase in recipient mice. Statistical analysis was performed using Log-rank (Mantel-Cox) test and paired two-tail t test. RESULT: Exposure to pelvic irradiation significantly damaged rectal epithelium with the loss of Lgr5+ve rectal stem cells. Radiosensitivity of rectal epithelium was also observed with exposure to clinically relevant fractionated pelvic irradiation. Regenerative capacity of Lgr5+ve rectal stem cells was compromised in response to fractionated pelvic irradiation. Ex vivo organoid study demonstrated that Lgr5+ve rectal stem cells are sensitive to both single and fractionated radiation. Organoid-based transplantation of Lgr5+ve rectal stem cells promotes repair and regeneration of rectal epithelium. CONCLUSION: Lgr5-positive rectal stem cells are radiosensitive and contribute to radiation-induced rectal epithelial toxicity. Transplantation of Lgr5-positive rectal stem cells mitigates radiation-induced rectal injury and promotes repair and regeneration process in rectum.


Assuntos
Lesões por Radiação , Reto , Animais , Humanos , Mucosa Intestinal , Masculino , Camundongos , Organoides , Receptores Acoplados a Proteínas G/genética , Células-Tronco
12.
J Clin Transl Res ; 7(2): 257-262, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-34104829

RESUMO

BACKGROUND: Previous trials have shown improved efficacy of neoadjuvant treatment when combined with angiotensin II receptor antagonist, losartan in patients with locally advanced pancreatic ductal adenocarcinoma (PDA). However, role of losartan is unknown in metastatic PDA. In this retrospective observational study, we examined the relationship between losartan use at time of diagnosis and continued through chemotherapy treatment with clinical outcomes in patients with metastatic PDA that received chemotherapy. METHODS: We retrospectively evaluated 114 metastatic PDA patients treated at University of Kansas Cancer Center between January 2000 and November 2019. We compared overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR) between patients using losartan at time of their cancer diagnosis and a control group of patients who were not on losartan. A subgroup analysis was performed based on patients who were on a 100 mg dose of losartan along with chemotherapy versus patients treated with chemotherapy (without losartan). Another subgroup analysis was performed based on chemotherapy regimen: Fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFIRINOX) versus Gemcitabine and Abraxane. RESULTS: No significant difference was found in OS (p=0.466) or PFS (p=0.919) in patients on losartan (median 274 day, 83 day) and control patients (median 279 day, 111 day). No significant difference was found in ORR (p=0.621) or in DCR (p=0.497). No significant difference was found in OS (p=0.771) or PFS (p=0.0604) in losartan patients (median 347 day, 350 day) and control patients (median 333 day, 101 day) treated with FOLFIRINOX. No significant difference was found in OS (p=0.916) or PFS (p=0.341) in losartan (median 312 day, 69 day) and control patients (median 221 day, 136 day) treated with Gemcitabine plus Abraxane. No significant difference was found in OS (p=0.727) or PFS (p=0.790) in 100 mg losartan patients (median 261 day, 84 day) and control (median 279 day, 111 day). CONCLUSIONS: Patients on losartan at time of diagnosis and continued through chemotherapy treatment had no significant difference in OS, PFS, ORR, DCR than control patients. Subgroup analysis of patients treated with FOLFIRINOX revealed a longer PFS with losartan than control but did not reach statistical significance, likely due to small sample size. Our findings should be validated in a larger cohort to confirm if the benefit of losartan and FOLFIRINOX seen in a neoadjuvant setting for locally advanced cancer also applies to metastatic cancer. RELEVANCE FOR PATIENTS: This research adds to growing data on the efficacy of angiotensin receptor blocking drugs as adjunctive treatment in addition to chemotherapy in pancreatic cancer with specific focus on metastatic disease.

13.
Cell Rep ; 36(10): 109674, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496236

RESUMO

Tumor-initiating stem cells (TSCs) are critical for drug resistance and immune escape. However, the mutual regulations between TSC and tumor microenvironment (TME) remain unclear. Using DNA-label retaining, single-cell RNA sequencing (scRNA-seq), and other approaches, we investigated intestinal adenoma in response to chemoradiotherapy (CRT), thus identifying therapy-resistant TSCs (TrTSCs). We find bidirectional crosstalk between TSCs and TME using CellPhoneDB analysis. An intriguing finding is that TSCs shape TME into a landscape that favors TSCs for immunosuppression and propagation. Using adenoma-organoid co-cultures, niche-cell depletion, and lineaging tracing, we characterize a functional role of cyclooxygenase-2 (Cox-2)-dependent signaling, predominantly occurring between tumor-associated monocytes and macrophages (TAMMs) and TrTSCs. We show that TAMMs promote TrTSC proliferation through prostaglandin E2 (PGE2)-PTGER4(EP4) signaling, which enhances ß-catenin activity via AKT phosphorylation. Thus, our study shows that the bidirectional crosstalk between TrTSC and TME results in a pro-tumorigenic and immunosuppressive contexture.


Assuntos
Carcinogênese/patologia , Forma Celular/fisiologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/fisiologia , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Humanos , Intestinos/metabolismo , Camundongos , Organoides/metabolismo
14.
Cell Biol Toxicol ; 25(3): 297-308, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18563600

RESUMO

The heat-stable enterotoxin (Y-STa) produced by the pathogenic strains of Yersinia enterocolitica is a causative agent of secretory diarrhea. We have reported earlier that Y-STa-induced inositol trisphosphate-mediated cytosolic calcium rise occurs in rat intestinal epithelial cells. In the present communication, the involvement of a nuclear calcium store in the action mechanism of Y-STa in rat intestinal epithelial cells has been shown. Calcium imaging with time series confocal microscopy shows that Y-STa stimulates both the nuclear and cytosolic calcium levels in rat intestinal epithelial cells where a rise in nuclear calcium precedes the cytosolic events. Moreover, Y-STa stimulates both cytosolic and nuclear inositol trisphosphate (IP(3)) levels in a time-dependent manner. Western blot and immunocytochemical analysis reveal a higher density of IP(3) receptor type II in the nuclear membrane compared to the cytosol, which may be the cause of an early rise of the nuclear calcium level. Therefore, it is suggested that Y-STa regulates the nuclear and cytosolic calcium signals in a distinct temporal manner in rat intestinal epithelial cells.


Assuntos
Toxinas Bacterianas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Enterócitos/efeitos dos fármacos , Yersinia enterocolitica/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Compostos de Boro/farmacologia , Cálcio/metabolismo , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citosol/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Inositol 1,4,5-Trifosfato/metabolismo , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Masculino , Microscopia Confocal , Membrana Nuclear/química , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , Ratos , Tapsigargina/farmacologia , Fatores de Tempo
15.
Clin Cancer Res ; 25(15): 4791-4807, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30940656

RESUMO

PURPOSE: The radiosensitivity of the normal intestinal epithelium is the major limiting factor for definitive radiotherapy against abdominal malignancies. Radiosensitizers, which can be used without augmenting radiation toxicity to normal tissue, are still an unmet need. Inhibition of proteosomal degradation is being developed as a major therapeutic strategy for anticancer therapy as cancer cells are more susceptible to proteasomal inhibition-induced cytotoxicity compared with normal cells. Auranofin, a gold-containing antirheumatoid drug, blocks proteosomal degradation by inhibiting deubiquitinase inhibitors. In this study, we have examined whether auranofin selectively radiosensitizes colon tumors without promoting radiation toxicity in normal intestine. EXPERIMENTAL DESIGN: The effect of auranofin (10 mg/kg i.p.) on the radiation response of subcutaneous CT26 colon tumors and the normal gastrointestinal epithelium was determined using a mouse model of abdominal radiation. The effect of auranofin was also examined in a paired human colonic organoid system using malignant and nonmalignant tissues from the same patient. RESULTS: Both in the mouse model of intestinal injury and in the human nonmalignant colon organoid culture, auranofin pretreatment prevented radiation toxicity and improved survival with the activation of p53/p21-mediated reversible cell-cycle arrest. However, in a mouse model of abdominal tumor and in human malignant colonic organoids, auranofin inhibited malignant tissue growth with inhibition of proteosomal degradation, induction of endoplasmic reticulum stress/unfolded protein response, and apoptosis. CONCLUSIONS: Our data suggest that auranofin is a potential candidate to be considered as a combination therapy with radiation to improve therapeutic efficacy against abdominal malignancies.


Assuntos
Auranofina/farmacologia , Neoplasias do Colo/radioterapia , Mucosa Intestinal/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Lesões por Radiação/prevenção & controle , Radiossensibilizantes/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Antirreumáticos/farmacologia , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Lesões por Radiação/patologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Stem Cell Res Ther ; 9(1): 26, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29394953

RESUMO

BACKGROUND: Radiation-induced gastrointestinal syndrome (RIGS) results from the acute loss of intestinal stem cells (ISC), impaired epithelial regeneration, and subsequent loss of the mucosal barrier, resulting in electrolyte imbalance, diarrhea, weight loss, sepsis, and mortality. The high radiosensitivity of the intestinal epithelium limits effective radiotherapy against abdominal malignancies and limits the survival of victims of nuclear accidents or terrorism. Currently, there is no approved therapy to mitigate radiation toxicity in the intestine. Here we demonstrate that BCN057, an anti-neoplastic small molecular agent, induces ISC proliferation and promotes intestinal epithelial repair against radiation injury. METHODS: BCN057 (90 mg/kg body weight, subcutaneously) was injected into C57Bl6 male mice (JAX) at 24 h following abdominal irradiation (AIR) and was continued for 8 days post-irradiation. BCN057-mediated rescue of Lgr5-positive ISC was validated in Lgr5-EGFP-Cre-ERT2 mice exposed to AIR. The regenerative response of Lgr5-positive ISC was examined by lineage tracing assay using Lgr5-EGFP-ires-CreERT2-TdT mice with tamoxifen administration to activate Cre recombinase and thereby marking the ISC and their respective progeny. Ex vivo three-dimensional organoid cultures were developed from surgical specimens of human colon or from mice jejunum and were used to examine the radio-mitigating role of BCN057 on ISC ex vivo. Organoid growth was determined by quantifying the budding crypt/total crypt ratio. Statistical analysis was performed using Log-rank (Mantel-Cox) test and paired two-tail t test. RESULTS: Treatment with BCN057 24 h after a lethal dose of AIR rescues ISC, promotes regeneration of the intestinal epithelium, and thereby mitigates RIGS. Irradiated mice without BCN057 treatment suffered from RIGS, resulting in 100% mortality within 15 days post-radiation. Intestinal organoids developed from mice jejunum or human colon demonstrated a regenerative response with BCN057 treatment and mitigated radiation toxicity. However, BCN057 did not deliver radio-protection to mouse or human colon tumor tissue. CONCLUSION: BCN057 is a potential mitigator against RIGS and may be useful for improving the therapeutic ratio of abdominal radiotherapy. This is the first report demonstrating that a small molecular agent mitigates radiation-induced intestinal injury by inducing ISC self-renewal and proliferation.


Assuntos
Raios gama/efeitos adversos , Enteropatias/prevenção & controle , Mucosa Intestinal/metabolismo , Lesões por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Células-Tronco/metabolismo , Animais , Enteropatias/metabolismo , Enteropatias/patologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Protetores contra Radiação/química , Células-Tronco/patologia
17.
Oncomedicine ; 2: 156-167, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29445586

RESUMO

The unfolded protein response (UPR) is an established and well-studied cellular response to the stress and serves to relieve the stress and reinstate cellular homeostasis. It occurs in the endoplasmic reticulum (ER), responsible of properly folding and processing of secretory and transmembrane proteins. It is extremely sensitive to alteration in homeostasis caused by various internal or external stressors which leads to accumulation of misfolded or unfolded proteins in the ER lumen. The UPR works by restoring protein homeostasis in the ER, either through the boosting of protein-folding and degradation capability or by assuaging the demands for such effects, and can cause the activation of cell death if unable to do so. Cancer cells have adapted to gain advantage from the UPR and keeping the cell away from apoptosis and promoting survival, including survival of the cancer stem cells and evading the immune system. Several components of the UPR are overexpressed in a malignant cell and are responsible for resistance from various chemotherapy options and radiotherapy, which are also responsible for causing ER stress and activating the UPR. In this review, we discuss the various ways in which UPR can aid different cancers to survive and evade therapy and highlight recent research, which exploits the UPR to confer sensitivity to these cancer cells against various drugs and radiation.

18.
Int J Radiat Oncol Biol Phys ; 96(3): 566-77, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27485285

RESUMO

PURPOSE: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). METHODS AND MATERIALS: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. RESULTS: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. CONCLUSIONS: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted proteins were identified in urinary and serum exosomes. Together, these data showed the feasibility of defining biomarkers that could elucidate tissue-associated and systemic response caused by high-dose ionizing radiation. This is the first report using an exosome proteomics approach to identify radiation signatures.


Assuntos
Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/urina , Bioensaio/métodos , Exossomos/química , Proteoma/análise , Exposição à Radiação/análise , Síndrome Aguda da Radiação/diagnóstico , Animais , Biomarcadores/sangue , Biomarcadores/urina , Estudos de Viabilidade , Camundongos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Contagem Corporal Total/métodos , Fluxo de Trabalho
19.
Nat Commun ; 7: 13096, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734833

RESUMO

WNT/ß-catenin signalling is crucial for intestinal homoeostasis. The intestinal epithelium and stroma are the major source of WNT ligands but their origin and role in intestinal stem cell (ISC) and epithelial repair remains unknown. Macrophages are a major constituent of the intestinal stroma. Here, we analyse the role of macrophage-derived WNT in intestinal repair in mice by inhibiting their release using a macrophage-restricted ablation of Porcupine, a gene essential for WNT synthesis. Such Porcn-depleted mice have normal intestinal morphology but are hypersensitive to radiation injury in the intestine compared with wild-type (WT) littermates. Porcn-null mice are rescued from radiation lethality by treatment with WT but not Porcn-null bone marrow macrophage-conditioned medium (CM). Depletion of extracellular vesicles (EV) from the macrophage CM removes WNT function and its ability to rescue ISCs from radiation lethality. Therefore macrophage-derived EV-packaged WNTs are essential for regenerative response of intestine against radiation.


Assuntos
Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Lesões por Radiação/metabolismo , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Células Cultivadas , Feminino , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Estimativa de Kaplan-Meier , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Lesões por Radiação/genética
20.
Toxicon ; 45(3): 361-7, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15683875

RESUMO

In response to Yersinia enterocolitica heat stable enterotoxin (Y-STa) intracellular calcium level was increased with a prolong sustained phase in presence of calcium chloride in extracellular environment in rat intestinal epithelial cells. Chelation of extracellular calcium with EGTA (extracellular calcium chelator) and suspension of cells in calcium free buffer demonstrated a rapid but transient rise in calcium level, which suggested that Y-STa induced rise in intracellular calcium concentration was the combination of both intracellular calcium store depletion and calcium influx from extracellular environment. Moreover, in response to Y-STa phosphoinositide specific phospholipase C activity and inositol tri phosphate (IP3) level was increased and U73122, a phospholipase C inhibitor could completely inhibit Y-STa induced calcium rise. However, treatment of rat enterocytes with dantrolene IP3, a mediated calcium release inhibitor from intracellular store resulted partial inhibition of Y-STa induced rise in intracellular calcium level. Similar observation was noted with IP3 receptor antagonist 2ABP (2-amino-ethoxydiphenylborate). These results suggested that beside phospholipase C IP3 pathway, phospholipase C might have an independent role in Y-STa induced calcium influx. Rise in phospholipase Cgamma isoform activity in response to Y-STa suggested that gamma isoform of phospholipase C might have a role in Y-STa mediated rise in intracellular calcium level.


Assuntos
Toxinas Bacterianas/farmacologia , Cálcio/metabolismo , Enterotoxinas/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo , Yersinia enterocolitica/fisiologia , Animais , Compostos de Boro/farmacologia , Canais de Cálcio , Células Cultivadas , Dantroleno/farmacologia , Estrenos/farmacologia , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Masculino , Pirrolidinonas/farmacologia , Ratos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Fatores de Tempo , Fosfolipases Tipo C/antagonistas & inibidores , Yersinia enterocolitica/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA