Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Biol Rep ; 50(12): 10179-10188, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924447

RESUMO

BACKGROUND: Breast cancer (BRCA) is the most common and leading cause of cancer-related death in women. MicroRNAs (miRNAs) are short non-coding RNA fragments that play a role in regulating gene expression including the cancer-related pathways. Although dysregulation of miR-223 has been demonstrated in recent studies to have prognostic value in various cancers, its diagnostic and prognostic role in BRCA remains unknown. METHODS: The expression and the prognostic value of miR-223 were evaluated using the TCGA data and verified by qRT-PCR. Subsequently, potential oncogenic targets of miR-223 were identified by using three different miRNA target prediction tools and the GEPIA database. In addition to these databases, protein-protein interaction network, molecular functions, prognostic value, and the expression level of miR-223 targets were included by using several other bioinformatics tools and databases; such as, UALCAN, GeneMANIA and Metascape. RESULTS: The bioinformatic results demonstrated that miR-223 downregulated in BRCA and associated with poor prognosis of patients. In vitro experiments validated that miR-223 significantly downregulated in BRCA cells, MCF-7, SK-BR3, MDA-MB-231 and HCC1500, compared to normal breast cell line hTERT-HME1. Furthermore, ANLN, DYNLT1, LRRC59, SLC12A8 and TPM3 genes were identified as the potential oncogenic target genes of miR-223 based on their expression and prognosis in BRCA. Additionally, protein-protein interaction network of these target genes was mainly enriched in dynein intermediate chain binding, cell division, regulation of cell cycle process, and positive regulation of cellular component biogenesis. CONCLUSIONS: The results suggests that miR-223 and its targets, ANLN, DYNLT1, LRRC59, SLC12A8 and TPM3, might be reliable potential prognostic biomarkers in BRCA patients.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ciclo Celular , Regulação Neoplásica da Expressão Gênica/genética , Dineínas/genética
2.
Mol Cell Probes ; 66: 101866, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183924

RESUMO

BACKGROUND: Pancreatic cancer (PC) is an insidious cancer that is commonly diagnosed in advanced stages. Therefore, it is necessary to understand PC-related mechanisms in order to discover new and reliable diagnostic biomarkers. It is known that miRNAs play a crucial role in carcinogenesis by targeting mRNAs. In this study we aimed to explore interaction between downregulated miR-203 and its upregulated target DUSP5 in PC. METHODS: Using bioinformatics approaches we identified the DUSP5 as a direct target gene of miR-203 and detected potential binding sites between miR-203 and DUSP5. Additionally, we evaluated subcellular location, expression level and prognostic value of DUSP5 in PC through using various bioinformatics tools. To investigate the relationship between miR-203 and DUSP5, we increased the expression levels of miR-203 by transfecting miR-203 mimics into the pancreatic cancer cell line, PANC-1. Finally, MTT, wound healing, and colony formation assays were performed to determine effect of overexpressed miR-203 on proliferation and migration of PANC-1 cells. RESULTS: We found that expression level of DUSP5 in pancreas tissue was one of the lowest tissue expression among all normal human tissue types. In addition, DUSP5 expression was upregulated both PC tissues and cell line and associated with poor overall survival in PC. Overexpression of miR-203 significantly downregulated expression level of DUSP5 and remarkably suppressed proliferation, migration and colony formation ability of PANC-1 cells. CONCLUSIONS: These findings suggest that miR-203 restrains proliferation and migration of PC cells by regulating oncogenic activity of DUSP5 in PC, thereby could be novel candidate biomarkers for PC diagnosis and treatment.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pancreáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Neoplasias Pancreáticas
3.
Biochem Biophys Res Commun ; 585: 89-95, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34801937

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone tumor which has unclear pathobiology. Hence, enlightening the exact molecular mechanism underlying osteosarcoma progression is crucial for developing new treatment strategies. One member of the ARID family of DNA binding proteins is ARID3A that is implicated in osteosarcoma pathogenesis. ARID3A could bind E2F1 and regulate the transcription of E2F1 targets. At the same time, BECN1 is a well-characterized autophagy regulator gene that is a direct target of E2F1. The present study aimed to investigate the effect of ARID3A on the expression of BECN1 in osteosarcoma cells. First, we determined gene expression levels of ARID3A, BECN1, and E2F1 in U-2 OS by qPCR and confirmed with online datasets from GEO database. In addition, the prognostic value of these genes was also evaluated from Kaplan-Meier plotter database. Next, ARID3A was overexpressed and silenced in order to investigate the effect of ARID3A on BECN1 expression and proliferation of U-2 OS cells. Our results demonstrated that BECN1 was negatively correlated with E2F1 and positively correlated with ARID3A based on initial expression and prognostic effect in OS. Overexpression of ARID3A upregulated BECN1 while silenced ARID3A downregulated BECN1 expression in U-2 OS cells. Additionally, silencing of ARID3A promoted colony formation and proliferation, whereas overexpression of ARID3A suppressed colony formation and proliferation of U-2 OS cells. Taken together, these results indicate that ARID3A could function as tumor suppressor and affect the expression level of BECN1 in U-2 OS cells.


Assuntos
Autofagia/genética , Proteína Beclina-1/genética , Neoplasias Ósseas/genética , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Osteossarcoma/genética , Fatores de Transcrição/genética , Sequência de Bases , Sítios de Ligação/genética , Neoplasias Ósseas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Osteossarcoma/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Biochem Biophys Res Commun ; 490(3): 1100-1105, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28669734

RESUMO

Osteosarcoma is the most common primary bone tumor in children and adolescents. Understanding the basic molecular mechanisms in developing cancer can be helpful in developing alternative treatment strategies. The relationship between dysregulated non-coding RNAs' (ncRNA) expression level and osteosarcoma was detected. Among those ncRNAs, the expression levels of miR-664a were detected to be upregulated and MEG3 long non-coding RNA levels were detected to be downregulated in osteosarcoma tissue and cell lines. In this study, miR-664a inhibitor was used in order to investigate the changes in the expression levels of MEG3 gene and miR-664a in osteosarcoma cancer cell line (U2-OS) and human osteoblast cell line (hFOB 1.19). According to our results, the expression level of MEG3 gene was increased while the expression level of miR-664a was decreased, as expected. In addition, changes in expression level of MEG3 and miR-644a interferes with the migration of osteosarcoma cells migration speed of osteosarcoma cells. These results are found to be statistically significant (p < 0.05). As a result of this study, it was shown that the upregulated expression of miR-664a could have an inhibitory effect on MEG3 gene expression and migration of osteosarcoma cells.


Assuntos
Neoplasias Ósseas/genética , Osso e Ossos/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/genética , RNA Longo não Codificante/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular , Humanos , Osteossarcoma/patologia
5.
Plant Direct ; 8(10): e70007, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39372443

RESUMO

Although peroxisomes are integral for both primary and secondary metabolism, how developmental changes affect activity of peroxisomes remains poorly understood. Here, we used published RNA-seq data to analyze the expression patterns of genes encoding 21 peroxisome metabolic pathways at successive developmental stages of Zea mays and Oryza sativa. Photorespiration was the most represented pathway in adult leaf relative to the juvenile stages. Components of reactive oxygen species (ROS)/reactive nitrogen species (RNS) metabolism, NADPH regeneration, and catabolism of polyamines were also enriched at later stages of leaf differentiation. The most commonly upregulated gene in differentiated leaves across all datasets of both species was BETAINE ALANINE DEHYDROGENASE (BADH). BADH functions in catabolism of polyamines where it converts 4-aminobutyraldehyde (ABAL) to 4-aminobutyrate (GABA). We tested the outcome of RNA-seq analysis by qRT-PCR in developing Triticum monococcum ssp. monococcum (Einkorn) seedlings. Consistent with the outcomes of RNA-seq analysis, transcription of BADH and CATALASE3 (CAT3) were upregulated in older seedlings. CAT3 is an essential peroxisome biogenesis factor and a key enzyme of ROS homeostasis. Furthermore, exogenous application of GABA resulted in higher peroxisome abundance and transcriptional upregulation of BADH and a gene encoding another peroxisome biogenesis factor responsible for peroxisome fission, PEROXIN11C (PEX11C), in leaves. We propose that GABA contributes to regulation of peroxisome fission machinery during leaf differentiation.

6.
Cells ; 13(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39056807

RESUMO

Recycling of unnecessary or dysfunctional cellular structures through autophagy plays a critical role in cellular homeostasis and environmental resilience. Therefore, the autophagy trait may have been unintentionally selected in wheat breeding programs for higher yields in arid climates. This hypothesis was tested by measuring the response of three common autophagy markers, ATG7, ATG8, and NBR1, to a heat wave under reduced soil moisture content in 16 genetically diverse spring wheat landraces originating from different geographical locations. We observed in the greenhouse trials that ATG8 and NBR1 exhibited genotype-specific responses to a 1 h, 40 °C heat wave, while ATG7 did not show a consistent response. Three genotypes from Uruguay, Mozambique, and Afghanistan showed a pattern consistent with higher autophagic activity: decreased or stable abundance of both ATG8 and NBR1 proteins, coupled with increased transcription of ATG8 and NBR1. In contrast, three genotypes from Pakistan, Ethiopia, and Egypt exhibited elevated ATG8 protein levels alongside reduced or unaltered ATG8 transcript levels, indicating a potential suppression or no change in autophagic activity. Principal component analysis demonstrated a correlation between lower abundance of ATG8 and NBR1 proteins and higher yield in the field trials. We found that (i) the combination of heat and drought activated autophagy only in several genotypes, suggesting that despite being a resilience mechanism, autophagy is a heat-sensitive process; (ii) higher autophagic activity correlates positively with greater yield; (iii) the lack of autophagic activity in some high-yielding genotypes suggests contribution of alternative stress-resilient mechanisms; and (iv) enhanced autophagic activity in response to heat and drought was independently selected by wheat breeding programs in different geographic locations.


Assuntos
Autofagia , Genótipo , Temperatura Alta , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/metabolismo , Triticum/fisiologia , Autofagia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Nat Genet ; 56(7): 1377-1385, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886586

RESUMO

The presence of basal lineage characteristics signifies hyperaggressive human adenocarcinomas of the breast, bladder and pancreas. However, the biochemical mechanisms that maintain this aberrant cell state are poorly understood. Here we performed marker-based genetic screens in search of factors needed to maintain basal identity in pancreatic ductal adenocarcinoma (PDAC). This approach revealed MED12 as a powerful regulator of the basal cell state in this disease. Using biochemical reconstitution and epigenomics, we show that MED12 carries out this function by bridging the transcription factor ΔNp63, a known master regulator of the basal lineage, with the Mediator complex to activate lineage-specific enhancer elements. Consistent with this finding, the growth of basal-like PDAC is hypersensitive to MED12 loss when compared to PDAC cells lacking basal characteristics. Taken together, our genetic screens have revealed a biochemical interaction that sustains basal identity in human cancer, which could serve as a target for tumor lineage-directed therapeutics.


Assuntos
Carcinoma Ductal Pancreático , Complexo Mediador , Neoplasias Pancreáticas , Fatores de Transcrição , Proteínas Supressoras de Tumor , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Linhagem da Célula/genética , Elementos Facilitadores Genéticos
8.
Clin Exp Med ; 23(3): 841-851, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35810257

RESUMO

The bulk of evidence has revealed that dysregulated expression of long non-coding RNAs (lncRNAs) plays a crucial functional role in cancer biology. However, the mechanistic role of lncRNAs in the initiation, progression and immune landscape of thyroid carcinoma (THCA) still remains largely unknown. This study aimed to explore the significance of H19 in the diagnostic and immune related roles in THCA. The expression level of H19 was analyzed using the TNMplot, GSCA, UALCAN, GEPIA, Wanderer, UCSC Xena and GEO databases. Enrichment analyses were performed to investigate the possible underlying biological pathways by LinkedOmics. Moreover, cBioPortal web tool was used to analyze genetic alterations of H19. Finally, we used TIMER and GEPIA databases to explore the correlations between H19 and tumor-infiltrated immune cells and immune markers. LncRNA H19 was differentially expressed in various cancers and also remarkably downregulated in the THCA tissues compared to the normal ones. Genetic alteration analysis revealed that there was a significant correlation between alterations in H19 and overall survival of THCA patients. Furthermore, enrichment analysis indicated the functional relationship between co-expression network of H19 and extracellular structure organization, and immune microenvironment. In addition, H19 expression was positively correlated with infiltration level of diverse immune cells including CD4+T cells, CD8+T cells, B cells, dendritic cells, neutrophils and macrophages and was closely associated with multiple immune markers in THCA. Conclusively, this comprehensive study indicates the lncRNA H19 might have a significant role in the initiation and progression of THCA. Hence, our findings might provide ideas on the selection of novel diagnostic biomarkers and assist in the designing of the effective pharmaceutical targets for THCA.


Assuntos
RNA Longo não Codificante , Neoplasias da Glândula Tireoide , Humanos , RNA Longo não Codificante/genética , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Biomarcadores , Linfócitos B , Linfócitos T CD4-Positivos , Microambiente Tumoral/genética
9.
Cells ; 11(11)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681460

RESUMO

Drought resiliency strategies combine developmental, physiological, cellular, and molecular mechanisms. Here, we compare drought responses in two resilient spring wheat (Triticum aestivum) genotypes: a well-studied drought-resilient Drysdale and a resilient genotype from the US Pacific North-West Hollis. While both genotypes utilize higher water use efficiency through the reduction of stomatal conductance, other mechanisms differ. First, Hollis deploys the drought escape mechanism to a greater extent than Drysdale by accelerating the flowering time and reducing root growth. Second, Drysdale uses physiological mechanisms such as non-photochemical quenching (NPQ) to dissipate the excess of harvested light energy and sustain higher Fv/Fm and ϕPSII, whereas Hollis maintains constant NPQ but lower Fv/Fm and ϕPSII values. Furthermore, more electron donors of the electron transport chain are in the oxidized state in Hollis than in Drysdale. Third, many ROS homeostasis parameters, including peroxisome abundance, transcription of peroxisome biogenesis genes PEX11 and CAT, catalase protein level, and enzymatic activity, are higher in Hollis than in Drysdale. Fourth, transcription of autophagy flux marker ATG8.4 is upregulated to a greater degree in Hollis than in Drysdale under drought, whereas relative ATG8 protein abundance under drought stress is lower in Hollis than in Drysdale. These data demonstrate the activation of autophagy in both genotypes and a greater autophagic flux in Hollis. In conclusion, wheat varieties utilize different drought tolerance mechanisms. Combining these mechanisms within one genotype offers a promising strategy to advance crop resiliency.


Assuntos
Secas , Triticum , Autofagia/genética , Genótipo , Triticum/metabolismo , Água/metabolismo
10.
Turk J Biol ; 42(6): 527-536, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30983871

RESUMO

Triticum monococcum subsp. monococcum as a first cultivated diploid wheat species possesses desirable agronomic and quality characteristics. Drought and salinity are the most dramatic environmental stress factors that have serious impact on yield and quality of crops; however, plants can use alternative defense mechanisms against these stresses. The posttranscriptional alteration of gene expression by microRNAs (miRNAs) is one of the most conserved mechanisms. In plant species including wheat genomes, miRNAs have been implicated in the management of salt and drought stress; however, studies on einkorn wheat (Triticum monococcum subsp. monococcum) are not yet available. In this study, we aimed to identify conserved miRNAs in einkorn wheat using next generation sequencing technology and bioinformatics analysis. In order to include a larger set of miRNAs, small RNA molecules from pooled plant samples grown under normal, drought, and salinity conditions were used for the library preparation and sequence analysis. After bioinformatics analysis, we identified 167 putative mature miRNA sequences belonging to 140 distinct miRNA families. We also presented a comparative analysis to propose that miRNAs and their target genes were involved in salt and drought stress control in addition to a comprehensive analysis of the scanned target genes in the T. aestivum genome.

11.
Case Rep Otolaryngol ; 2012: 903714, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22953127

RESUMO

Foreign bodies in maxillary sinuses are unusual clinical conditions, and they can cause chronic sinusitis by mucosal irritation. Most cases of foreign bodies in maxillary sinus are related to iatrogenic dental manipulation and only a few cases with non-dental origin are reported. Oroantral fistulas secondary to dental procedures are the most common way of insertion. Treatment is surgical removal of the foreign body either endoscopically or with a combined approach, with Caldwell-Luc procedure if endoscopic approach is inadequate for visualisation. In this case, we present a 24-year-old male patient with unilateral chronic maxillary sinusitis due to a wooden toothpick in left maxillary sinus. The patient had a history of upper second premolar tooth extraction. CT scan revealed sinus opacification with presence of a foreign body in left maxillary sinus extending from the floor of the sinus to the orbital base. The foreign body, a wooden toothpick, was removed with Caldwell-Luc procedure since it was impossible to remove the toothpick endoscopically. There was no obvious oroantral fistula in the time of surgery, but the position of the toothpick made us to think that it was inserted through a previously healed fistula, willingly or accidentally.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA