Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 14: 147, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23497014

RESUMO

BACKGROUND: The meninges (arachnoid and pial membranes) and associated vasculature (MAV) and choroid plexus are important in maintaining cerebrospinal fluid (CSF) generation and flow. MAV vasculature was previously observed to be adversely affected by environmentally-induced hyperthermia (EIH) and more so by a neurotoxic amphetamine (AMPH) exposure. Herein, microarray and RT-PCR analysis was used to compare the gene expression profiles between choroid plexus and MAV under control conditions and at 3 hours and 1 day after EIH or AMPH exposure. Since AMPH and EIH are so disruptive to vasculature, genes related to vasculature integrity and function were of interest. RESULTS: Our data shows that, under control conditions, many of the genes with relatively high expression in both the MAV and choroid plexus are also abundant in many epithelial tissues. These genes function in transport of water, ions, and solutes, and likely play a role in CSF regulation. Most genes that help form the blood-brain barrier (BBB) and tight junctions were also highly expressed in MAV but not in choroid plexus. In MAV, exposure to EIH and more so to AMPH decreased the expression of BBB-related genes such as Sox18, Ocln, and Cldn5, but they were much less affected in the choroid plexus. There was a correlation between the genes related to reactive oxidative stress and damage that were significantly altered in the MAV and choroid plexus after either EIH or AMPH. However, AMPH (at 3 hr) significantly affected about 5 times as many genes as EIH in the MAV, while in the choroid plexus EIH affected more genes than AMPH. Several unique genes that are not specifically related to vascular damage increased to a much greater extent after AMPH compared to EIH in the MAV (Lbp, Reg3a, Reg3b, Slc15a1, Sct and Fst) and choroid plexus (Bmp4, Dio2 and Lbp). CONCLUSIONS: Our study indicates that the disruption of choroid plexus function and damage produced by AMPH and EIH is significant, but the changes may not be as pronounced as they are in the MAV, particularly for AMPH. Expression profiles in the MAV and choroid plexus differed to some extent and differences were not restricted to vascular related genes.


Assuntos
Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/metabolismo , Meninges/metabolismo , Anfetamina/toxicidade , Aracnoide-Máter/irrigação sanguínea , Aracnoide-Máter/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Plexo Corióideo/irrigação sanguínea , Plexo Corióideo/efeitos dos fármacos , Meio Ambiente , Febre , Humanos , Meninges/irrigação sanguínea , Meninges/efeitos dos fármacos , Proteínas Associadas a Pancreatite , Transcriptoma
2.
Synapse ; 64(8): 579-93, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20340164

RESUMO

Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.


Assuntos
Anfetamina/toxicidade , Circulação Cerebrovascular/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Meninges/efeitos dos fármacos , Lobo Parietal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Animais , Circulação Cerebrovascular/fisiologia , Corpo Estriado/irrigação sanguínea , Corpo Estriado/fisiopatologia , Retículo Endoplasmático/patologia , Retículo Endoplasmático/fisiologia , Masculino , Meninges/irrigação sanguínea , Meninges/fisiopatologia , Neurotoxinas/toxicidade , Lobo Parietal/irrigação sanguínea , Lobo Parietal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Estresse Fisiológico/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA