Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Biotechnol J ; 22(6): 1757-1772, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38288521

RESUMO

Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world, including autotetraploid (M. sativa ssp. sativa) and diploid alfalfa (M. sativa ssp. caerulea, progenitor of autotetraploid alfalfa). Here, we reported a high-quality genome of ZW0012 (diploid alfalfa, 769 Mb, contig N50 = 5.5 Mb), which was grouped into the Northern group in population structure analysis, suggesting that our genome assembly filled a major gap among the members of M. sativa complex. During polyploidization, large phenotypic differences occurred between diploids and tetraploids, and the genetic information underlying its massive phenotypic variations remains largely unexplored. Extensive structural variations (SVs) were identified between ZW0012 and XinJiangDaYe (an autotetraploid alfalfa with released genome). We identified 71 ZW0012-specific PAV genes and 1296 XinJiangDaYe-specific PAV genes, mainly involved in defence response, cell growth, and photosynthesis. We have verified the positive roles of MsNCR1 (a XinJiangDaYe-specific PAV gene) in nodulation using an Agrobacterium rhizobia-mediated transgenic method. We also demonstrated that MsSKIP23_1 and MsFBL23_1 (two XinJiangDaYe-specific PAV genes) regulated leaf size by transient overexpression and virus-induced gene silencing analysis. Our study provides a high-quality reference genome of an important diploid alfalfa germplasm and a valuable resource of variation landscape between diploid and autotetraploid, which will facilitate the functional gene discovery and molecular-based breeding for the cultivars in the future.


Assuntos
Cromossomos de Plantas , Diploide , Genoma de Planta , Medicago sativa , Medicago sativa/genética , Genoma de Planta/genética , Cromossomos de Plantas/genética , Variação Genética
2.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675597

RESUMO

Global food production relies on annual grain crops. The reliability and productivity of these crops are threatened by adaptations to climate change and unsustainable rates of soil loss associated with their cultivation. Perennial grain crops, which do not require planting every year, have been proposed as a transformative solution to these challenges. Perennial grain crops typically rely on wild species as direct domesticates or as sources of perenniality in hybridization with annual grains. Onobrychis spp. (sainfoins) are a genus of perennial legumes domesticated as ancient forages. Baki™ bean is the tradename for pulses derived from sainfoins, with ongoing domestication underway to extend demonstrated benefits to sustainable agriculture. This study contributes to a growing body of evidence characterizing the nutritional quality of Baki™ bean. Through two studies, we investigated the safety of Baki™ bean for human consumption. We quantified heavy metals, folate, and canavanine for samples from commercial seed producers, and we quantified levels of mycotoxins, microorganisms, and pesticides in samples from a single year and seed producer, representing different varieties and production locations. The investigated analytes were not detectable or occurred at levels that do not pose a significant safety risk. Overall, this study supports the safety of Baki™ bean for human consumption as a novel pulse crop.


Assuntos
Fabaceae , Inocuidade dos Alimentos , Fabaceae/química , Fabaceae/microbiologia , Domesticação , Metais Pesados/análise , Ácido Fólico/análise , Canavanina/análise , Nutrientes/análise , Micotoxinas/análise , Praguicidas/análise
3.
Mol Ecol ; 30(18): 4448-4465, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217151

RESUMO

Human induced environmental change may require rapid adaptation of plant populations and crops, but the genomic basis of environmental adaptation remain poorly understood. We analysed polymorphic loci from the perennial crop Medicago sativa (alfalfa or lucerne) and the annual legume model species M. truncatula to search for a common set of candidate genes that might contribute to adaptation to abiotic stress in both annual and perennial Medicago species. We identified a set of candidate genes of adaptation associated with environmental gradients along the distribution of the two Medicago species. Candidate genes for each species were detected in homologous genomic linkage blocks using genome-environment (GEA) and genome-phenotype association analyses. Hundreds of GEA candidate genes were species-specific, of these, 13.4% (M. sativa) and 24% (M. truncatula) were also significantly associated with phenotypic traits. A set of 168 GEA candidates were shared by both species, which was 25.4% more than expected by chance. When combined, they explained a high proportion of variance for certain phenotypic traits associated with adaptation. Genes with highly conserved functions dominated among the shared candidates and were enriched in gene ontology terms that have shown to play a central role in drought avoidance and tolerance mechanisms by means of cellular shape modifications and other functions associated with cell homeostasis. Our results point to the existence of a molecular basis of adaptation to abiotic stress in Medicago determined by highly conserved genes and gene functions. We discuss these results in light of the recently proposed omnigenic model of complex traits.


Assuntos
Medicago truncatula , Medicago , Aclimatação , Adaptação Fisiológica/genética , Humanos , Medicago/genética , Medicago sativa/genética , Medicago truncatula/genética , Solo
4.
Theor Appl Genet ; 130(2): 261-268, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27662844

RESUMO

KEY MESSAGE: We attempted to identify genomic regions controlling forage yield and nutritive value in alfalfa. Several candidate genes and associated genetic markers were identified that could potentially be useful for alfalfa breeding to more efficiently develop improved cultivars. Alfalfa is one of the most widely cultivated forage legumes worldwide and improving alfalfa forage yield and nutritive value is a major global breeding goal. Genotyping-by-sequencing (GBS) provides cost-effective molecular marker genotyping for genome-wide association studies (GWAS). Using more than 15,000 genome-wide single nucleotide polymorphisms (SNP) identified from GBS, we conducted a GWAS to investigate forage yield and nutritive value-related traits. We have detected a number of associations for all the traits evaluated and a number of associations detected were located on the Medicago truncatula genome. The SNP in a coding region of a cell wall biosynthesis gene was associated with several cell wall-related traits, and we suggest that it may be the causative polymorphism. Two other SNPs residing in meristematic development and early growth genes were found to associate with the total biomass yield. None of the SNPs associated with regrowth after harvest or with spring regrowth were mapped to the M. truncatula genome, possibly reflecting the fact that M. truncatula is an annual species related to alfalfa that typically has limited ability to regrow. The alleles we identify with the major impact on forage yield and nutritive value can be rapidly incorporated into our breeding program.


Assuntos
Ração Animal , Genoma de Planta , Medicago sativa/genética , Valor Nutritivo , Mapeamento Cromossômico , DNA de Plantas/genética , Estudos de Associação Genética , Marcadores Genéticos , Genética Populacional , Técnicas de Genotipagem , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
5.
Biochem Genet ; 55(1): 63-76, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27567621

RESUMO

Drought is a major stress factor for agricultural production including alfalfa production. One way to counterbalance the yield losses is the introgression of drought tolerant germplasm into breeding programs. As an effort to exploit such germplasm, 16 individual plants were selected from the Southeastern Turkey from their natural habitat and clonally propagated in field trials with an ultimate goal to use the germplasm as parents for releasing a synthetic cultivar. Forage yield and forage quality traits were evaluated and molecular genetic diversity among genotypes were determined using inter simple sequence repeat markers. Genotypes showed a variation from growth habit to yield and quality traits indicating sufficient phenotypic variation for diverse breeding efforts (for grazing or harvesting) and long term selection schemes. A large amount of genetic variation was observed even with a limited number of marker and genotypes. However, no pattern of spatial genetic structure was observed for the scale of the study when genetic variation is linked to the geographic origin. We conclude that ex situ natural variation provides a wealth of germplasm that could be incorporated into breeding programs aiming to improve drought tolerance. We also suggest an extensive collection of seeds/plant tissue from unique plants with desirable traits rather than putting more efforts to create a spatial germplasm sampling efforts in narrow regions.


Assuntos
Cruzamento , Secas , Variação Genética , Medicago sativa/química , Medicago sativa/genética , Termotolerância/genética , Genótipo , Temperatura Alta , Repetições de Microssatélites/genética , Fenótipo , Turquia
6.
Biochem Genet ; 54(5): 619-35, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27246402

RESUMO

In this study, the patterns of genetic variation and phylogenetic relationships of mastic tree (Pistacia lentiscus L.) genotypes including 12 males and 12 females were evaluated using SSR, RAPD, ISSR, and ITS markers yielding 40, 703, 929 alleles, and 260-292 base pairs for ITS1 region, respectively. The average number of alleles produced from SSR, RAPD, and ISSR primers were 5.7, 14, and 18, respectively. The grouping pattern obtained from Bayesian clustering method based on each marker dataset was produced. Principal component analyses (PCA) of molecular data was investigated and neighbor joining dendrograms were subsequently created. Overall, the results indicated that ISSR and RAPD markers were the most powerful to differentiate the genotypes in comparison with other types of molecular markers used in this study. The ISSR results indicated that male and female genotypes were distinctly separated from each other. In this frame, M9 (Alaçati) and M10 (Mesta Sakiz Adasi-Chios) were the closest genotypes and while F11 (Seferihisar) and F12 (Bornova/Gökdere) genotypes fall into same cluster and showing closer genetic relation. The RAPD pattern indicated that M8 (Urla) and M10 (Mesta Sakiz Adasi-Chios), and F10 (Mesta Sakiz Adasi-Chios) and F11 (Seferihisar) genotypes were the closest male and female genotypes, respectively.


Assuntos
DNA de Plantas/genética , Pistacia/genética , Polimorfismo Genético , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Frequência do Gene , Marcadores Genéticos , Filogenia , Análise de Componente Principal
7.
Biochem Genet ; 54(4): 421-437, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27048293

RESUMO

Bread wheat (Triticum aestivum L.) gene pool was analyzed with 117 microsatellite markers scattered throughout A, B, and D genomes. Ninety microsatellite markers were giving 1620 polymorphic alleles in 55 different bread wheat genotypes. These genotypes were found to be divided into three subgroups based on Bayesian model and Principal component analysis. The highest polymorphism information content value for the markers resides on A genome was estimated for wmc262 marker located on 4A chromosome with the polymorphism information content value of 0.960. The highest polymorphism information content value (0.954) among the markers known to be located on B genome was realized for wmc44 marker located on 1B chromosome. The highest polymorphism information content value for the markers specific to D genome was found in gwm174 marker located on 5D chromosome with the polymorphism information content value of 0.948. The presence of linkage disequilibrium between 81 pairwise SSR markers reside on the same chromosome was tested and very limited linkage disequilibrium was observed. The results confirmed that the most distant genotype pairs were as follows Ceyhan-99-Behoth 6, Gerek 79-Douma 40989, and Karahan-99-Douma 48114.


Assuntos
Mapeamento Cromossômico/métodos , Desequilíbrio de Ligação , Triticum/genética , Teorema de Bayes , Cromossomos de Plantas/genética , Variação Genética , Genoma de Planta , Repetições de Microssatélites
8.
Int J Mol Sci ; 17(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27618017

RESUMO

Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination.


Assuntos
Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Medicago truncatula/metabolismo , Sementes/crescimento & desenvolvimento , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Desenvolvimento Vegetal , Sementes/metabolismo
9.
Plant Cell Environ ; 38(10): 1997-2011, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25707512

RESUMO

Improving drought tolerance of crop plants is a major goal of plant breeders. In this study, we characterized biomass and drought-related traits of 220 Medicago truncatula HapMap accessions. Characterized traits included shoot biomass, maximum leaf size, specific leaf weight, stomatal density, trichome density and shoot carbon-13 isotope discrimination (δ(13) C) of well-watered M. truncatula plants, and leaf performance in vitro under dehydration stress. Genome-wide association analyses were carried out using the general linear model (GLM), the standard mixed linear model (MLM) and compressed MLM (CMLM) in TASSEL, which revealed significant overestimation of P-values by CMLM. For each trait, candidate genes and chromosome regions containing SNP markers were found that are in significant association with the trait. For plant biomass, a 0.5 Mbp region on chromosome 2 harbouring a plasma membrane intrinsic protein, PIP2, was discovered that could potentially be targeted to increase dry matter yield. A protein disulfide isomerase-like protein was found to be tightly associated with both shoot biomass and leaf size. A glutamate-cysteine ligase and an aldehyde dehydrogenase family protein with Arabidopsis homologs strongly expressed in the guard cells were two of the top genes identified by stomata density genome-wide association studies analysis.


Assuntos
Estudos de Associação Genética , Medicago truncatula/genética , Polimorfismo de Nucleotídeo Único , Aldeído Desidrogenase/genética , Biomassa , Secas , Estudo de Associação Genômica Ampla , Genômica , Glutamato-Cisteína Ligase/genética , Modelos Lineares , Desequilíbrio de Ligação , Medicago truncatula/citologia , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/fisiologia , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Brotos de Planta/citologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia
10.
Front Plant Sci ; 15: 1348168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756967

RESUMO

Salinity and Phoma medicaginis infection represent significant challenges for alfalfa cultivation in South Africa, Europe, Australia, and, particularly, Tunisia. These constraints have a severe impact on both yield and quality. The primary aim of this study was to establish the genetic basis of traits associated with biomass and growth of 129 Medicago sativa genotypes through genome-wide association studies (GWAS) under combined salt and P. medicaginis infection stresses. The results of the analysis of variance (ANOVA) indicated that the variation in these traits could be primarily attributed to genotype effects. Among the test genotypes, the length of the main stem, the number of ramifications, the number of chlorotic leaves, and the aerial fresh weight exhibited the most significant variation. The broad-sense heritability (H²) was relatively high for most of the assessed traits, primarily due to genetic factors. Cluster analysis, applied to morpho-physiological traits under the combined stresses, revealed three major groups of accessions. Subsequently, a GWAS analysis was conducted to validate significant associations between 54,866 SNP-filtered single-nucleotide polymorphisms (SNPs) and seven traits. The study identified 27 SNPs that were significantly associated with the following traits: number of healthy leaves (two SNPs), number of chlorotic leaves (five SNPs), number of infected necrotic leaves (three SNPs), aerial fresh weight (six SNPs), aerial dry weight (nine SNPs), number of ramifications (one SNP), and length of the main stem (one SNP). Some of these markers are related to the ionic transporters, cell membrane rigidity (related to salinity tolerance), and the NBS_LRR gene family (associated with disease resistance). These findings underscore the potential for selecting alfalfa genotypes with tolerance to the combined constraints of salinity and P. medicaginis infection.

11.
Front Nutr ; 10: 1292628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283912

RESUMO

To realize the potential of sainfoins to contribute to sustainable agriculture and expand on demonstrated uses and benefits, de novo domestication is occurring to develop perennial Baki™ bean, the trade name used by The Land Institute for pulses (i.e., grain legumes) derived from sainfoins. The objective of this study was to characterize amino acid and fatty acid profiles of depodded seeds from commercial sainfoin (Onobrychis viciifolia) seed lots, and compare these results with data published in the Global Food Composition Database for Pulses. The fatty acid profile consisted primarily of polyunsaturated fatty acids (56.8%), compared to monounsaturated (29.0%) and saturated fatty acids (14.2%), and n-3 fatty acids (39.5%), compared to n-9 (28.4%) and n-6 (17.6%) fatty acids. The essential fatty acid linolenic acid (18,3 n-3) was the most abundant fatty acid (39.2%), followed by oleic acid (18,1 cis-9) (27.8%), and the essential fatty acid linoleic acid (18,2 n-6) (17.3%). The amino acid profile consisted primarily of the nonessential amino acids glutamic acid (18.3%), arginine (11.6%), and aspartic acid (10.8%), followed by the essential amino acids leucine (6.8%), and lysine (5.8%). Essential amino acid content met adult daily requirements for each amino acid. This indicates that sainfoin seeds may be a complete plant protein source. However, further research is necessary to better understand protein quality, defined by protein digestibility in addition to the amino acid profile. By demonstrating favorable fatty acid and amino acid profiles to human health, these results contribute to a growing body of evidence supporting the potential benefits of perennial Baki™ bean, a novel, perennial pulse derived from sainfoins.

12.
Front Plant Sci ; 14: 1177406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255566

RESUMO

Sainfoin (Onobrychis spp.) is a perennial forage legume that is also attracting attention as a perennial pulse with potential for human consumption. The dual use of sainfoin underpins diverse research and breeding programs focused on improving sainfoin lines for forage and pulses, which is driving the generation of complex datasets describing high dimensional phenotypes in the post-omics era. To ensure that multiple user groups, for example, breeders selecting for forage and those selecting for edible seed, can utilize these rich datasets, it is necessary to develop common ontologies and accessible ontology platforms. One such platform, Crop Ontology, was created in 2008 by the Consortium of International Agricultural Research Centers (CGIAR) to host crop-specific trait ontologies that support standardized plant breeding databases. In the present study, we describe the sainfoin crop ontology (CO). An in-depth literature review was performed to develop a comprehensive list of traits measured and reported in sainfoin. Because the same traits can be measured in different ways, ultimately, a set of 98 variables (variable = plant trait + method of measurement + scale of measurement) used to describe variation in sainfoin were identified. Variables were formatted and standardized based on guidelines provided here for inclusion in the sainfoin CO. The 98 variables contained a total of 82 traits from four trait classes of which 24 were agronomic, 31 were morphological, 19 were seed and forage quality related, and 8 were phenological. In addition to the developed variables, we have provided a roadmap for developing and submission of new traits to the sainfoin CO.

13.
Theor Appl Genet ; 125(3): 577-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22476875

RESUMO

Association mapping enables the detection of marker-trait associations in unstructured populations by taking advantage of historical linkage disequilibrium (LD) that exists between a marker and the true causative polymorphism of the trait phenotype. Our first objective was to understand the pattern of LD decay in the diploid alfalfa genome. We used 89 highly polymorphic SSR loci in 374 unimproved diploid alfalfa (Medicago sativa L.) genotypes from 120 accessions to infer chromosome-wide patterns of LD. We also sequenced four lignin biosynthesis candidate genes (caffeoyl-CoA 3-O-methyltransferase (CCoAoMT), ferulate-5-hydroxylase (F5H), caffeic acid-O-methyltransferase (COMT), and phenylalanine amonialyase (PAL 1)) to identify single nucleotide polymorphisms (SNPs) and infer within gene estimates of LD. As the second objective of this study, we conducted association mapping for cell wall components and agronomic traits using the SSR markers and SNPs from the four candidate genes. We found very little LD among SSR markers implying limited value for genomewide association studies. In contrast, within gene LD decayed within 300 bp below an r (2) of 0.2 in three of four candidate genes. We identified one SSR and two highly significant SNPs associated with biomass yield. Based on our results, focusing association mapping on candidate gene sequences will be necessary until a dense set of genome-wide markers is available for alfalfa.


Assuntos
Mapeamento Cromossômico/métodos , Diploide , Genoma de Planta , Desequilíbrio de Ligação , Medicago sativa/genética , DNA de Plantas/genética , Perfilação da Expressão Gênica , Estudos de Associação Genética/métodos , Marcadores Genéticos , Genótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Theor Appl Genet ; 121(3): 403-15, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20352180

RESUMO

Diversity analyses in alfalfa have mainly evaluated genetic relationships of cultivated germplasm, with little known about variation in diploid germplasm in the M. sativa-falcata complex. A collection of 374 individual genotypes derived from 120 unimproved diploid accessions from the National Plant Germplasm System, including M. sativa subsp. caerulea, falcata, and hemicycla, were evaluated with 89 polymorphic SSR loci in order to estimate genetic diversity, infer the genetic bases of current morphology-based taxonomy, and determine population structure. Diploid alfalfa is highly variable. A model-based clustering analysis of the genomic data identified two clearly discrete subpopulations, corresponding to the morphologically defined subspecies falcata and caerulea, with evidence of the hybrid nature of the subspecies hemicycla based on genome composition. Two distinct subpopulations exist within each subsp. caerulea and subsp. falcata. The distinction of caerulea was based on geographical distribution. The two falcata groups were separated based on ecogeography. The results show that taxonomic relationships based on morphology are reflected in the genetic marker data with some exceptions, and that clear distinctions among subspecies are evident at the diploid level. This research provides a baseline from which to systematically evaluate variability in tetraploid alfalfa and serves as a starting point for exploring diploid alfalfa for genetic and breeding experiments.


Assuntos
Diploide , Marcadores Genéticos/genética , Variação Genética , Medicago sativa/genética , Sequências Repetitivas de Ácido Nucleico , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Genótipo , Reação em Cadeia da Polimerase
15.
Mol Ecol Resour ; 19(5): 1374-1377, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31177618

RESUMO

One of the most tedious steps in genetic data analyses is the reformatting data generated with one program for use with other applications. This conversion is necessary because comprehensive evaluation of the data may be based on different algorithms included in diverse software, each requiring a distinct input format. A platform-independent and freely available program or a web-based tool dedicated to such reformatting can save time and efforts in data processing. Here, we report widgetcon, a website and a program which has been developed to quickly and easily convert among various molecular data formats commonly used in phylogenetic analysis, population genetics, and other fields. The web-based service is available at https://www.widgetcon.net. The program and the website convert the major data formats in four basic steps in less than a minute. The resource will be a useful tool for the research community and can be updated to include more formats and features in the future.


Assuntos
Biologia Computacional/métodos , Genética Populacional/métodos , Internet , Software
16.
J Plant Physiol ; 171(17): 1609-18, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25151130

RESUMO

During P deficiency, the increased activity of malate dehydrogenase (MDH, EC 1.1.1.37) can lead to malate accumulation. Cytosolic- and nodule-enhanced MDH (cMDH and neMDH, respectively) are known isoforms, which contribute to MDH activity in root nodules. The aim of this study was to investigate the role of the cMDH isoforms in nodule malate supply under P deficiency. Nodulated lupins (Lupinus angustifolius var. Tanjil) were hydroponically grown at adequate P (+P) or low P (-P). Total P concentration in nodules decreased under P deficiency, which coincided with an increase in total MDH activity. A consequence of higher MDH activity was the enhanced accumulation of malate derived from dark CO2 fixation via PEPC and not from pyruvate. Although no measurable neMDH presence could be detected via PCR, gene-specific primers detected two 1kb amplicons of cMDH, designated LangMDH1 (corresponding to +P, HQ690186) and LangMDH2 (corresponding to -P, HQ690187), respectively. Sequencing analyses of these cMDH amplicons showed them to be 96% identical on an amino acid level. There was a high degree of diversification between proteins detected in this study and other known MDH proteins, particularly those from other leguminous plants. Enhanced malate synthesis in P-deficient nodules was achieved via increased anaplerotic CO2 fixation and subsequent higher MDH activities. Novel isoforms of cytosolic MDH may be involved, as shown by gene expression of specific genes under P deficiency.


Assuntos
Lupinus/enzimologia , Malato Desidrogenase/genética , Malatos/metabolismo , Fósforo/deficiência , Sequência de Aminoácidos , Sequência de Bases , Citosol/enzimologia , DNA Complementar/química , DNA Complementar/genética , DNA de Plantas/química , DNA de Plantas/genética , Hidroponia , Isoenzimas , Lupinus/genética , Malato Desidrogenase/metabolismo , Dados de Sequência Molecular , Fixação de Nitrogênio , Fósforo/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA