Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Stroke ; 54(11): 2776-2784, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37814956

RESUMO

BACKGROUND: Cerebrovascular reactivity (CVR) is inversely related to white matter hyperintensity severity, a marker of cerebral small vessel disease (SVD). Less is known about the relationship between CVR and other SVD imaging features or cognition. We aimed to investigate these cross-sectional relationships. METHODS: Between 2018 and 2021 in Edinburgh, we recruited patients presenting with lacunar or cortical ischemic stroke, whom we characterized for SVD features. We measured CVR in subcortical gray matter, normal-appearing white matter, and white matter hyperintensity using 3T magnetic resonance imaging. We assessed cognition using Montreal Cognitive Assessment. Statistical analyses included linear regression models with CVR as outcome, adjusted for age, sex, and vascular risk factors. We reported regression coefficients with 95% CIs. RESULTS: Of 208 patients, 182 had processable CVR data sets (median age, 68.2 years; 68% men). Although the strength of association depended on tissue type, lower CVR in normal-appearing tissues and white matter hyperintensity was associated with larger white matter hyperintensity volume (BNAWM=-0.0073 [95% CI, -0.0133 to -0.0014] %/mm Hg per 10-fold increase in percentage intracranial volume), more lacunes (BNAWM=-0.00129 [95% CI, -0.00215 to -0.00043] %/mm Hg per lacune), more microbleeds (BNAWM=-0.00083 [95% CI, -0.00130 to -0.00036] %/mm Hg per microbleed), higher deep atrophy score (BNAWM=-0.00218 [95% CI, -0.00417 to -0.00020] %/mm Hg per score point increase), higher perivascular space score (BNAWM=-0.0034 [95% CI, -0.0066 to -0.0002] %/mm Hg per score point increase in basal ganglia), and higher SVD score (BNAWM=-0.0048 [95% CI, -0.0075 to -0.0021] %/mm Hg per score point increase). Lower CVR in normal-appearing tissues was related to lower Montreal Cognitive Assessment without reaching convention statistical significance (BNAWM=0.00065 [95% CI, -0.00007 to 0.00137] %/mm Hg per score point increase). CONCLUSIONS: Lower CVR in patients with SVD was related to more severe SVD burden and worse cognition in this cross-sectional analysis. Longitudinal analysis will help determine whether lower CVR predicts worsening SVD severity or vice versa. REGISTRATION: URL: https://www.isrctn.com; Unique identifier: ISRCTN12113543.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Substância Branca , Masculino , Humanos , Idoso , Feminino , Estudos Transversais , Doenças de Pequenos Vasos Cerebrais/complicações , Imageamento por Ressonância Magnética/métodos , Cognição , Substância Branca/patologia
2.
Neuroimage ; 230: 117786, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497771

RESUMO

Dynamic contrast-enhanced MRI (DCE-MRI) is increasingly used to quantify and map the spatial distribution of blood-brain barrier (BBB) leakage in neurodegenerative disease, including cerebral small vessel disease and dementia. However, the subtle nature of leakage and resulting small signal changes make quantification challenging. While simplified one-dimensional simulations have probed the impact of noise, scanner drift, and model assumptions, the impact of spatio-temporal effects such as gross motion, k-space sampling and motion artefacts on parametric leakage maps has been overlooked. Moreover, evidence on which to base the design of imaging protocols is lacking due to practical difficulties and the lack of a reference method. To address these problems, we present an open-source computational model of the DCE-MRI acquisition process for generating four dimensional Digital Reference Objects (DROs), using a high-resolution brain atlas and incorporating realistic patient motion, extra-cerebral signals, noise and k-space sampling. Simulations using the DROs demonstrated a dominant influence of spatio-temporal effects on both the visual appearance of parameter maps and on measured tissue leakage rates. The computational model permits greater understanding of the sensitivity and limitations of subtle BBB leakage measurement and provides a non-invasive means of testing and optimising imaging protocols for future studies.


Assuntos
Barreira Hematoencefálica/diagnóstico por imagem , Simulação por Computador , Meios de Contraste , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Artefatos , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/metabolismo , Meios de Contraste/metabolismo , Humanos , Modelos Neurológicos , Movimento (Física) , Doenças Neurodegenerativas/metabolismo
3.
Magn Reson Med ; 86(4): 1888-1903, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34002894

RESUMO

PURPOSE: Dynamic contrast-enhanced (DCE) -MRI with Patlak model analysis is increasingly used to quantify low-level blood-brain barrier (BBB) leakage in studies of pathophysiology. We aimed to investigate systematic errors due to physiological, experimental, and modeling factors influencing quantification of the permeability-surface area product PS and blood plasma volume vp , and to propose modifications to reduce the errors so that subtle differences in BBB permeability can be accurately measured. METHODS: Simulations were performed to predict the effects of potential sources of systematic error on conventional PS and vp quantification: restricted BBB water exchange, reduced cerebral blood flow, arterial input function (AIF) delay and B1+ error. The impact of targeted modifications to the acquisition and processing were evaluated, including: assumption of fast versus no BBB water exchange, bolus versus slow injection of contrast agent, exclusion of early data from model fitting and B1+ correction. The optimal protocol was applied in a cohort of recent mild ischaemic stroke patients. RESULTS: Simulation results demonstrated substantial systematic errors due to the factors investigated (absolute PS error ≤ 4.48 × 10-4 min-1 ). However, these were reduced (≤0.56 × 10-4 min-1 ) by applying modifications to the acquisition and processing pipeline. Processing modifications also had substantial effects on in-vivo normal-appearing white matter PS estimation (absolute change ≤ 0.45 × 10-4 min-1 ). CONCLUSION: Measuring subtle BBB leakage with DCE-MRI presents unique challenges and is affected by several confounds that should be considered when acquiring or interpreting such data. The evaluated modifications should improve accuracy in studies of neurodegenerative diseases involving subtle BBB breakdown.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Barreira Hematoencefálica/diagnóstico por imagem , Meios de Contraste , Humanos , Imageamento por Ressonância Magnética
4.
Stroke ; 50(11): 3108-3114, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31928512

RESUMO

Background and Purpose- Computed tomography (CT) perfusion (CTP) provides potentially valuable information to guide treatment decisions in acute stroke. Assessment of interobserver reliability of CTP has, however, been limited to small, mostly single center studies. We performed a large, internet-based study to assess observer reliability of CTP interpretation in acute stroke. Methods- We selected 24 cases from the IST-3 (Third International Stroke Trial), ATTEST (Alteplase Versus Tenecteplase for Thrombolysis After Ischaemic Stroke), and POSH (Post Stroke Hyperglycaemia) studies to illustrate various perfusion abnormalities. For each case, observers were presented with noncontrast CT, maps of cerebral blood volume, cerebral blood flow, mean transit time, delay time, and thresholded penumbra maps (dichotomized into penumbra and core), together with a short clinical vignette. Observers used a structured questionnaire to record presence of perfusion deficit, its extent compared with ischemic changes on noncontrast CT, and an Alberta Stroke Program Early CT Score for noncontrast CT and CTP. All images were viewed, and responses were collected online. We assessed observer agreement with Krippendorff-α. Intraobserver agreement was assessed by inviting observers who reviewed all scans for a repeat review of 6 scans. Results- Fifty seven observers contributed to the study, with 27 observers reviewing all 24 scans and 17 observers contributing repeat readings. Interobserver agreement was good to excellent for all CTP. Agreement was higher for perfusion maps compared with noncontrast CT and was higher for mean transit time, delay time, and penumbra map (Krippendorff-α =0.77, 0.79, and 0.81, respectively) compared with cerebral blood volume and cerebral blood flow (Krippendorff-α =0.69 and 0.62, respectively). Intraobserver agreement was fair to substantial in the majority of readers (Krippendorff-α ranged from 0.29 to 0.80). Conclusions- There are high levels of interobserver and intraobserver agreement for the interpretation of CTP in acute stroke, particularly of mean transit time, delay time, and penumbra maps.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Angiografia Cerebral , Imagem de Perfusão , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/tratamento farmacológico , Volume Sanguíneo Cerebral/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/administração & dosagem
5.
J Stroke Cerebrovasc Dis ; 27(7): 1815-1821, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29576397

RESUMO

GOAL: Magnetic resonance imaging (MRI) is the preferred modality for research on structural age-related brain changes. However, computed tomography (CT) is widely available and has practical and cost advantages over MRI for large-scale brain imaging research studies in acutely unwell patients. However, the relationships between MRI and CT measures of white matter hyperintensities (WMH) and atrophy are unclear. We examined the relationships between visual ratings of WMH, atrophy, and old infarcts in patients who had both CT and MRI scans. MATERIALS AND METHODS: Patients who had both CT and MRI scans in the International Stroke Trial-3 were studied. In both modalities, 2 raters independently completed standardized visual rating scales for WMH, and for central and superficial atrophy using a 5-point scale. In addition, 1 rater recorded old infarcts according to size and location. FINDINGS: Seventy patients with a mean age of 69 years were studied. There were moderate to substantial intrarater CT-MRI agreements for periventricular components of WMH scales (weighted Κappa = .55-.75). Agreements for basal ganglia ratings were lower (weighted Κappa = .18-.44), partly because of the misclassification of prominent perivascular spaces. Atrophy scales showed moderate to substantial CT-MRI agreements (weighted Κappa = .44-.70). MRI was more sensitive in the detection of smaller infarcts and cavitated lesions. CONCLUSIONS: Standardized visual rating scales of white matter lesions and atrophy mostly show substantial agreement between CT and MRI. Clinical CT scans have a strong potential for wider exploitation in research studies, particularly in acutely unwell populations.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Substância Branca/diagnóstico por imagem , Idoso , Encéfalo/patologia , Humanos , Variações Dependentes do Observador , Substância Branca/patologia
6.
Stroke ; 48(2): 353-360, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28008093

RESUMO

BACKGROUND AND PURPOSE: Computed tomographic angiography and magnetic resonance angiography are used increasingly to assess arterial patency in patients with ischemic stroke. We determined which baseline angiography features predict response to intravenous thrombolytics in ischemic stroke using randomized controlled trial data. METHODS: We analyzed angiograms from the IST-3 (Third International Stroke Trial), an international, multicenter, prospective, randomized controlled trial of intravenous alteplase. Readers, masked to clinical, treatment, and outcome data, assessed prerandomization computed tomographic angiography and magnetic resonance angiography for presence, extent, location, and completeness of obstruction and collaterals. We compared angiography findings to 6-month functional outcome (Oxford Handicap Scale) and tested for interactions with alteplase, using ordinal regression in adjusted analyses. We also meta-analyzed all available angiography data from other randomized controlled trials of intravenous thrombolytics. RESULTS: In IST-3, 300 patients had prerandomization angiography (computed tomographic angiography=271 and magnetic resonance angiography=29). On multivariable analysis, more extensive angiographic obstruction and poor collaterals independently predicted poor outcome (P<0.01). We identified no significant interaction between angiography findings and alteplase effect on Oxford Handicap Scale (P≥0.075) in IST-3. In meta-analysis (5 trials of alteplase or desmoteplase, including IST-3, n=591), there was a significantly increased benefit of thrombolytics on outcome (odds ratio>1 indicates benefit) in patients with (odds ratio, 2.07; 95% confidence interval, 1.18-3.64; P=0.011) versus without (odds ratio, 0.88; 95% confidence interval, 0.58-1.35; P=0.566) arterial obstruction (P for interaction 0.017). CONCLUSIONS: Intravenous thrombolytics provide benefit to stroke patients with computed tomographic angiography or magnetic resonance angiography evidence of arterial obstruction, but the sample was underpowered to demonstrate significant treatment benefit or harm among patients with apparently patent arteries. CLINICAL TRIAL REGISTRATION: URL: http://www.isrctn.com. Unique identifier: ISRCTN25765518.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Fibrinolíticos/administração & dosagem , Angiografia por Ressonância Magnética , Acidente Vascular Cerebral/diagnóstico por imagem , Terapia Trombolítica , Tomografia Computadorizada por Raios X , Administração Intravenosa , Idoso , Idoso de 80 Anos ou mais , Arteriopatias Oclusivas/diagnóstico por imagem , Arteriopatias Oclusivas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Feminino , Humanos , Internacionalidade , Masculino , Estudos Multicêntricos como Assunto/métodos , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Método Simples-Cego , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/administração & dosagem , Resultado do Tratamento
7.
Neuroradiology ; 59(10): 951-962, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815362

RESUMO

PURPOSE: Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. METHODS: We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. RESULTS: The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. CONCLUSION: The new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white matter damage.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/patologia , Substância Branca/patologia , Idoso , Feminino , Humanos , Masculino , Software
8.
J Stroke Cerebrovasc Dis ; 26(7): 1506-1513, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28314624

RESUMO

BACKGROUND: Leukoaraiosis is associated with impaired cerebral perfusion, but the effect of individual and combined small-vessel disease (SVD) features on white matter perfusion is unclear. METHODS: We studied patients recruited with perfusion imaging in the Third International Stroke Trial. We rated individual SVD features (leukoaraiosis, lacunes) and brain atrophy on baseline plain computed tomography or magnetic resonance imaging. Separately, we assessed white matter at the level of the lateral ventricles in the cerebral hemisphere contralateral to the stroke for visible areas of hypoperfusion (present or absent) on 4 time-based perfusion imaging parameters. We examined associations between SVD features (individually and summed) and presence of hypoperfusion using logistic regression adjusted for age, sex, baseline National Institutes of Health Stroke Scale, hypertension, and diabetes. RESULTS: A total of 115 patients with median (interquartile range) age of 81 (72-86) years, 78 (52%) of which were male, had complete perfusion data. Hypoperfusion was most frequent on mean transit time (MTT; 63 patients, 55%) and least frequent on time to maximum flow (19 patients, 17%). The SVD score showed stronger independent associations with hypoperfusion (e.g., MTT, odds ratio [OR] = 2.80; 95% confidence interval [CI] = 1.56-5.03) than individual SVD markers (e.g., white matter hypoattenuation score, MTT, OR = 1.49, 95% CI = 1.09-2.04). Baseline blood pressure did not differ by presence or absence of hypoperfusion or across strata of SVD score. Presence of white matter hypoperfusion increased with SVD summed score. CONCLUSIONS: The SVD summed score was associated with hypoperfusion more consistently than individual SVD features, providing validity to the SVD score concept. Increasing SVD burden indicates worse perfusion in the white matter.


Assuntos
Doenças de Pequenos Vasos Cerebrais/complicações , Circulação Cerebrovascular , Leucoencefalopatias/etiologia , Substância Branca/irrigação sanguínea , Idoso , Idoso de 80 Anos ou mais , Atrofia , Velocidade do Fluxo Sanguíneo , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Feminino , Humanos , Leucoaraiose , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/fisiopatologia , Modelos Logísticos , Imageamento por Ressonância Magnética , Masculino , Razão de Chances , Imagem de Perfusão/métodos , Fatores de Risco , Tomografia Computadorizada por Raios X
9.
Stroke ; 47(2): 410-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26696646

RESUMO

BACKGROUND AND PURPOSE: We assessed cross-sectional and longitudinal relationships between whole brain white matter hyperintensity (WMH) volume and regional cortical thickness. METHODS: We measured WMH volume and regional cortical thickness on magnetic resonance imaging at ≈73 and ≈76 years in 351 community-dwelling subjects from the Lothian Birth Cohort 1936. We used multiple linear regression to calculate cross-sectional and longitudinal associations between regional cortical thickness and WMH volume controlling for age, sex, Mini Mental State Examination, education, intelligence quotient at age 11, and vascular risk factors. RESULTS: We found cross-sectional associations between WMH volume and cortical thickness within and surrounding the Sylvian fissure at 73 and 76 years (rho=-0.276, Q=0.004). However, we found no significant longitudinal associations between (1) baseline WMH volume and change in cortical thickness; (2) baseline cortical thickness and change in WMH volume; or (3) change in WMH volume and change in cortical thickness. CONCLUSIONS: Our results show that WMH volume and cortical thinning both worsen with age and are associated cross-sectionally within and surrounding the Sylvian fissure. However, changes in WMH volume and cortical thinning from 73 to 76 years are not associated longitudinally in these relatively healthy older subjects. The underlying cause(s) of WMH growth and cortical thinning have yet to be fully determined.


Assuntos
Córtex Cerebral/patologia , Transtornos Cognitivos/patologia , Vida Independente , Leucoencefalopatias/patologia , Substância Branca/patologia , Idoso , Doenças Cardiovasculares/epidemiologia , Transtornos Cognitivos/epidemiologia , Estudos Transversais , Diabetes Mellitus/epidemiologia , Progressão da Doença , Feminino , Humanos , Hipercolesterolemia/epidemiologia , Hipertensão/epidemiologia , Leucoencefalopatias/epidemiologia , Modelos Lineares , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Fatores de Risco , Escócia/epidemiologia , Fumar/epidemiologia
10.
Neuroimage ; 125: 446-455, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26477653

RESUMO

There is evidence that subtle breakdown of the blood-brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n=201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a "sham" DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and K(Trans) estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model in low-permeability states, which has the potential to provide valuable information regarding BBB integrity in a range of diseases. However, absolute values of the resulting tracer kinetic parameters should be interpreted with extreme caution, and the size and influence of signal drift should be measured where possible.


Assuntos
Barreira Hematoencefálica/patologia , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Neuronavegação/métodos , Acidente Vascular Cerebral/patologia , Idoso , Permeabilidade Capilar/fisiologia , Meios de Contraste , Feminino , Humanos , Aumento da Imagem/métodos , Cinética , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
11.
Neuroradiology ; 57(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25287075

RESUMO

INTRODUCTION: CT angiography (CTA) is often used for assessing patients with acute ischaemic stroke. Only limited observer reliability data exist. We tested inter- and intra-observer reliability for the assessment of CTA in acute ischaemic stroke. METHODS: We selected 15 cases from the Third International Stroke Trial (IST-3, ISRCTN25765518) with various degrees of arterial obstruction in different intracranial locations on CTA. To assess inter-observer reliability, seven members of the IST-3 expert image reading panel (>5 years experience reading CTA) and seven radiology trainees (<2 years experience) rated all 15 scans independently and blind to clinical data for: presence (versus absence) of any intracranial arterial abnormality (stenosis or occlusion), severity of arterial abnormality using relevant scales (IST-3 angiography score, Thrombolysis in Cerebral Infarction (TICI) score, Clot Burden Score), collateral supply and visibility of a perfusion defect on CTA source images (CTA-SI). Intra-observer reliability was assessed using independently repeated expert panel scan ratings. We assessed observer agreement with Krippendorff's-alpha (K-alpha). RESULTS: Among experienced observers, inter-observer agreement was substantial for the identification of any angiographic abnormality (K-alpha = 0.70) and with an angiography assessment scale (K-alpha = 0.60-0.66). There was less agreement for grades of collateral supply (K-alpha = 0.56) or for identification of a perfusion defect on CTA-SI (K-alpha = 0.32). Radiology trainees performed as well as expert readers when additional training was undertaken (neuroradiology specialist trainees). Intra-observer agreement among experts provided similar results (K-alpha = 0.33-0.72). CONCLUSION: For most imaging characteristics assessed, CTA has moderate to substantial observer agreement in acute ischaemic stroke. Experienced readers and those with specialist training perform best.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Angiografia Cerebral , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Doença Aguda , Isquemia Encefálica/tratamento farmacológico , Competência Clínica , Humanos , Variações Dependentes do Observador , Estudos Prospectivos , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica
12.
Brain Commun ; 6(3): fcae133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715716

RESUMO

White matter hyperintensities (WMH), a common feature of cerebral small vessel disease, are related to worse clinical outcomes after stroke. We assessed the impact of white matter hyperintensity changes over 1 year after minor stroke on change in mobility and dexterity, including differences between the dominant and non-dominant hands and objective in-person assessment versus patient-reported experience. We recruited participants with lacunar or minor cortical ischaemic stroke, performed medical and cognitive assessments and brain MRI at presentation and at 1 year. At both time points, we used the timed-up and go test and the 9-hole peg test to assess mobility and dexterity. At 1 year, participants completed the Stroke Impact Scale. We ran two linear mixed models to assess change in timed-up and go and 9-hole peg test, adjusted for age, sex, stroke severity (National Institutes of Health Stroke Scale), dependency (modified Rankin Score), vascular risk factor score, white matter hyperintensity volume (as % intracranial volume) and additionally for 9-hole peg test: Montreal cognitive assessment, hand (dominant/non-dominant), National Adult Reading Test (premorbid IQ), index lesion side. We performed ordinal logistic regression, corrected for age and sex, to assess relations between timed-up and go and Stroke Impact Scale mobility, and 9-hole peg test and Stroke Impact Scale hand function. We included 229 participants, mean age 65.9 (standard deviation = 11.13); 66% male. 215/229 attended 1-year follow-up. Over 1 year, timed-up and go time increased with aging (standardized ß [standardized 95% Confidence Interval]: 0.124[0.011, 0.238]), increasing National Institutes of Health Stroke Scale (0.106[0.032, 0.180]), increasing modified Rankin Score (0.152[0.073, 0.231]) and increasing white matter hyperintensity volume (0.176[0.061, 0.291]). Men were faster than women (-0.306[0.011, 0.238]). Over 1 year, slower 9-hole peg test was related to use of non-dominant hand (0.290[0.155, 0.424]), aging (0.102[0.012, 0.192]), male sex (0.182[0.008, 0.356]), increasing National Institutes of Health Stroke Scale (0.160 [0.094, 0.226]), increasing modified Rankin Score (0.100[0.032, 0.169]), decreasing Montreal cognitive assessment score (-0.090[-0.167, -0.014]) and increasing white matter hyperintensity volume (0.104[0.015, 0.193]). One year post-stroke, Stroke Impact Scale mobility worsened per second increase on timed-up and go, odds ratio 0.67 [95% confidence interval 0.60, 0.75]. Stroke Impact Scale hand function worsened per second increase on the 9-hole peg test for the dominant hand (odds ratio 0.79 [0.71, 0.86]) and for the non-dominant hand (odds ratio 0.88 [0.83, 0.93]). Decline in mobility and dexterity is associated with white matter hyperintensity volume increase, independently of stroke severity. Mobility and dexterity declined more gradually for stable and regressing white matter hyperintensity volume. Dominant and non-dominant hands might be affected differently. In-person measures of dexterity and mobility are associated with self-reported experience 1-year post-stroke.

13.
J Am Heart Assoc ; 13(3): e032259, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38293936

RESUMO

BACKGROUND: White matter hyperintensities (WMHs) might regress and progress contemporaneously, but we know little about underlying mechanisms. We examined WMH change and underlying quantitative magnetic resonance imaging tissue measures over 1 year in patients with minor ischemic stroke with sporadic cerebral small vessel disease. METHODS AND RESULTS: We defined areas of stable normal-appearing white matter, stable WMHs, progressing and regressing WMHs based on baseline and 1-year brain magnetic resonance imaging. In these areas we assessed tissue characteristics with quantitative T1, fractional anisotropy (FA), mean diffusivity (MD), and neurite orientation dispersion and density imaging (baseline only). We compared tissue signatures cross-sectionally between areas, and longitudinally within each area. WMH change masks were available for N=197. Participants' mean age was 65.61 years (SD, 11.10), 59% had a lacunar infarct, and 68% were men. FA and MD were available for N=195, quantitative T1 for N=182, and neurite orientation dispersion and density imaging for N=174. Cross-sectionally, all 4 tissue classes differed for FA, MD, T1, and Neurite Density Index. Longitudinally, in regressing WMHs, FA increased with little change in MD and T1 (difference estimate, 0.011 [95% CI, 0.006-0.017]; -0.002 [95% CI, -0.008 to 0.003] and -0.003 [95% CI, -0.009 to 0.004]); in progressing and stable WMHs, FA decreased (-0.022 [95% CI, -0.027 to -0.017] and -0.009 [95% CI, -0.011 to -0.006]), whereas MD and T1 increased (progressing WMHs, 0.057 [95% CI, 0.050-0.063], 0.058 [95% CI, 0.050 -0.066]; stable WMHs, 0.054 [95% CI, 0.045-0.063], 0.049 [95% CI, 0.039-0.058]); and in stable normal-appearing white matter, MD increased (0.004 [95% CI, 0.003-0.005]), whereas FA and T1 slightly decreased and increased (-0.002 [95% CI, -0.004 to -0.000] and 0.005 [95% CI, 0.001-0.009]). CONCLUSIONS: Quantitative magnetic resonance imaging shows that WMHs that regress have less abnormal microstructure at baseline than stable WMHs and follow trajectories indicating tissue improvement compared with stable and progressing WMHs.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Substância Branca , Masculino , Humanos , Idoso , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem
14.
J Fungi (Basel) ; 9(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37623613

RESUMO

Aspergillus mold is a ubiquitously found, airborne pathogen that can cause a variety of diseases from mild to life-threatening in severity. Limitations in diagnostic methods combined with anti-fungal resistance render Aspergillus a global emerging pathogen. In industry, Aspergilli produce toxins, such as aflatoxins, which can cause food spoilage and pose public health risk issues. Here, we report a multiplex qPCR method for the detection and identification of the five most common pathogenic Aspergillus species, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Aspergillus nidulans. Our approach exploits species-specific nucleotide polymorphisms within their ITS genomic regions. This novel assay combines multiplex single-color real time qPCR and melting curve analysis and provides a straight-forward, rapid, and cost-effective detection method that can identify five Aspergillus species simultaneously in a single reaction using only six unlabeled primers. Due to their unique fragment lengths, the resulting amplicons are directly linked to certain Aspergillus species like fingerprints, following either electrophoresis or melting curve analysis. Our method is characterized by high analytical sensitivity and specificity, so it may serve as a useful and inexpensive tool for Aspergillus diagnostic applications both in health care and the food industry.

15.
J Neurol Sci ; 451: 120735, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499621

RESUMO

BACKGROUND: The paranasal sinus mucosal thickening, visible in magnetic resonance imaging (MRI), maybe a source of inflammation in microvessels, but its relationship with small vessel disease (SVD) is unclear. We reviewed the literature and analysed a sample of patients with sporadic SVD to identify any association between paranasal sinus opacification severity and SVD neuroimaging markers. METHODS: We systematically reviewed MEDLINE and EMBASE databases up to April 2020 for studies on paranasal sinus mucosal changes in patients with SVD, cerebrovascular disease (CVD), and age-related neurodegenerative diseases. We analysed clinical and MRI data from 100 participants in a prospective study, the Mild Stroke Study 3 (ISRCTN 12113543) at 1-3, 6 and 12 months following a minor stroke to test key outcomes from the literature review. We used multivariate linear regression to explore associations between modified Lund-Mackay (LM) scores and brain, white matter hyperintensities (WMH), enlarged perivascular spaces (PVS) volumes at each time point, adjusted for baseline age, sex, diabetes, hypercholesterolaemia, hypertension and smoking. RESULTS: The literature review, after screening 3652 publications, yielded 11 primary studies, for qualitative synthesis with contradictory results, as positive associations/higher risk from 5/7 CVD studies were contradicted by the two studies with largest samples, and data from dementia studies was equally split in their outcome. From the pilot sample of patients analysed (female N = 33, mean age 67.42 (9.70) years), total LM scores had a borderline negative association with PVS in the centrum semiovale at baseline and 6 months (B = -0.25, SE = 0.14, p = 0.06) but were not associated with average brain tissue, WMH or normal-appearing white matter volumes. CONCLUSION: The inconclusive results from the literature review and empirical study justify larger studies between PVS volume and paranasal sinuses opacification in patients with sporadic SVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Transtornos Cerebrovasculares , Seios Paranasais , Acidente Vascular Cerebral , Humanos , Feminino , Idoso , Masculino , Estudos Prospectivos , Doenças de Pequenos Vasos Cerebrais/patologia , Encéfalo/patologia , Acidente Vascular Cerebral/complicações , Transtornos Cerebrovasculares/complicações , Imageamento por Ressonância Magnética , Seios Paranasais/patologia
16.
Neurology ; 98(14): e1459-e1469, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35131905

RESUMO

BACKGROUND AND OBJECTIVES: The severity of white matter hyperintensities (WMH) at presentation with stroke is associated with poststroke dementia and dependency. However, WMH can decrease or increase after stroke; prediction of cognitive decline is imprecise; and there are few data assessing longitudinal interrelationships among changing WMH, cognition, and function after stroke, despite the clinical importance. METHODS: We recruited patients within 3 months of a minor ischemic stroke, defined as NIH Stroke Scale (NIHSS) score <8 and not expected to result in a modified Rankin Scale (mRS) score >2. Participants repeated MRI at 1 year and cognitive and mRS assessments at 1 and 3 years. We ran longitudinal mixed-effects models assessing change in Addenbrooke's Cognitive Examination-Revised (ACE-R) and mRS scores. For mRS score, we assessed longitudinal WMH volumes (cube root; percentage intracranial volume [ICV]), adjusting for age, NIHSS score, ACE-R, stroke subtype, and time to assessment. For ACE-R score, we additionally adjusted for ICV, mRS, premorbid IQ, and vascular risk factors. We then used a multivariate model to jointly assess changing cognition/mRS score, adjusted for prognostic variables, using all available data. RESULTS: We recruited 264 patients; mean age was 66.9 (SD 11.8) years; 41.7% were female; and median mRS score was 1 (interquartile range 1-2). One year after stroke, normalized WMH volumes were associated more strongly with 1-year ACE-R score (ß = -0.259, 95% CI -0.407 to -0.111 more WMH per 1-point ACE-R decrease, p = 0.001) compared to subacute WMH volumes and ACE-R score (ß = 0.105, 95% CI -0.265 to 0.054, p = 0.195). Three-year mRS score was associated with 3-year ACE-R score (ß = -0.272, 95% CI -0.429 to -0.115, p = 0.001). Combined change in baseline-1-year jointly assessed ACE-R/mRS scores was associated with fluctuating WMH volumes (F = 9.3, p = 0.03). DISCUSSION: After stroke, fluctuating WMH mean that 1-year, but not baseline, WMH volumes are associated strongly with contemporaneous cognitive scores. Covarying longitudinal decline in cognition and independence after stroke, central to dementia diagnosis, is associated with increasing WMH volumes.


Assuntos
Disfunção Cognitiva , Acidente Vascular Cerebral , Substância Branca , Idoso , Cognição , Disfunção Cognitiva/complicações , Disfunção Cognitiva/etiologia , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
17.
Front Comput Neurosci ; 16: 887633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093418

RESUMO

Vast quantities of Magnetic Resonance Images (MRI) are routinely acquired in clinical practice but, to speed up acquisition, these scans are typically of a quality that is sufficient for clinical diagnosis but sub-optimal for large-scale precision medicine, computational diagnostics, and large-scale neuroimaging collaborative research. Here, we present a critic-guided framework to upsample low-resolution (often 2D) MRI full scans to help overcome these limitations. We incorporate feature-importance and self-attention methods into our model to improve the interpretability of this study. We evaluate our framework on paired low- and high-resolution brain MRI structural full scans (i.e., T1-, T2-weighted, and FLAIR sequences are simultaneously input) obtained in clinical and research settings from scanners manufactured by Siemens, Phillips, and GE. We show that the upsampled MRIs are qualitatively faithful to the ground-truth high-quality scans (PSNR = 35.39; MAE = 3.78E-3; NMSE = 4.32E-10; SSIM = 0.9852; mean normal-appearing gray/white matter ratio intensity differences ranging from 0.0363 to 0.0784 for FLAIR, from 0.0010 to 0.0138 for T1-weighted and from 0.0156 to 0.074 for T2-weighted sequences). The automatic raw segmentation of tissues and lesions using the super-resolved images has fewer false positives and higher accuracy than those obtained from interpolated images in protocols represented with more than three sets in the training sample, making our approach a strong candidate for practical application in clinical and collaborative research.

18.
Front Neurol ; 12: 634460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732208

RESUMO

Lacunar strokes are a common type of ischemic stroke. They are known to have long-term cognitive deficits, but the influencing factors are still largely unknown. We investigated if the location of the index lacunar stroke or regional WMH and their change at 1 year could predict the cognitive performance at 1 and 3 years post-stroke in lacunar stroke patients. We used lacunar lesion location and WMH-segmented data from 118 patients, mean age 64.9 who had a brain MRI scan soon after presenting with symptoms, of which 88 had a repeated scan 12 months later. Premorbid intelligence (National Adult Reading Test) and current intelligence [Addenbrooke's Cognitive Exam-Revised (ACE-R)] were measured at 1, 12, and 36 months after the stroke. ANCOVA analyses adjusting for baseline cognition/premorbid intelligence, vascular risk factors, age, sex and total baseline WMH volume found that the recent small subcortical infarcts (RSSI) in the internal/external capsule/lentiform nucleus and centrum semiovale did not predict cognitive scores at 12 and 36 months. However, RSSI location moderated voxel-based associations of WMH change from baseline to 1 year with cognitive scores at 1 and 3 years. WMH increase in the external capsule, intersection between the anterior limb of the internal and external capsules, and optical radiation, was associated with worsening of ACE-R scores 1 and 3 years post-stroke after accounting for the location of the index infarct, age and baseline cognition.

19.
Front Neurol ; 12: 640498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746892

RESUMO

Lacunar strokes are a common type of ischemic stroke. They are associated with long-term disability, but the factors affecting the dynamic of the infarcted lesion and the brain imaging features associated with them, reflective of small vessel disease (SVD) severity, are still largely unknown. We investigated whether the distribution, volume and 1-year evolution of white matter hyperintensities (WMH), one of these SVD features, relate to the extent and location of these infarcts, accounting for vascular risk factors. We used imaging and clinical data from all patients [n = 118, mean age 64.9 (SD 11.75) years old] who presented to a regional hospital with a lacunar stroke syndrome within the years 2010 and 2013 and consented to participate in a study of stroke mechanisms. All patients had a brain MRI scan at presentation, and 88 had another scan 12 months after. Acute lesions (i.e., recent small subcortical infarcts, RSSI) were identified in 79 patients and lacunes in 77. Number of lacunes was associated with baseline WMH volume (B = 0.370, SE = 0.0939, P = 0.000174). RSSI volume was not associated with baseline WMH volume (B = 3.250, SE = 2.117, P = 0.129), but predicted WMH volume change (B = 2.944, SE = 0.913, P = 0.00184). RSSI location was associated with the spatial distribution of WMH and the pattern of 1-year WMH evolution. Patients with the RSSI in the centrum semiovale (n = 33) had significantly higher baseline volumes of WMH, recent and old infarcts, than patients with the RSSI located elsewhere [median 33.69, IQR (14.37 50.87) ml, 0.001 ≤ P ≤ 0.044]. But patients with the RSSI in the internal/external capsule/lentiform nucleus experienced higher increase of WMH volume after a year [n = 21, median (IQR) from 18 (11.70 31.54) ml to 27.41 (15.84 40.45) ml]. Voxel-wise analyses of WMH distribution in patients grouped per RSSI location revealed group differences increased in the presence of vascular risk factors, especially hypertension and recent or current smoking habit. In our sample of patients presenting to the clinic with lacunar strokes, lacunar strokes extent influenced WMH volume fate; and RSSI location and WMH spatial distribution and dynamics were intertwined, with differential patterns emerging in the presence of vascular risk factors. These results, if confirmed in wider samples, open potential avenues in stroke rehabilitation to be explored further.

20.
Neuroimage Clin ; 32: 102883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34911189

RESUMO

Subtle blood-brain barrier (BBB) permeability increases have been shown in small vessel disease (SVD) using various analysis methods. Following recent consensus recommendations, we used Patlak tracer kinetic analysis, considered optimal in low permeability states, to quantify permeability-surface area product (PS), a BBB leakage estimate, and blood plasma volume (vP) in 201 patients with SVD who underwent dynamic contrast-enhanced MRI scans. We ran multivariable regression models with a quantitative or qualitative metric of white matter hyperintensity (WMH) severity, demographic and vascular risk factors. PS increased with WMH severity in grey (B = 0.15, Confidence Interval (CI): [0.001,0.299], p = 0.049) and normal-appearing white matter (B = 0.015, CI: [-0.008,0.308], p = 0.062). Patients with more severe WMH had lower vP in WMH (B = -0.088, CI: [-0.138,-0.039], p < 0.001), but higher vP in normal-appearing white matter (B = 0.031, CI: [-0.004,0.065], p = 0.082). PS and vP were lower at older ages in WMH, grey and white matter. We conclude higher PS in normal-appearing tissue with more severe WMH suggests impaired BBB integrity beyond visible lesions indicating that the microvasculature is compromised in normal-appearing white matter and WMH. BBB dysfunction is an important mechanism in SVD, but associations with clinical variables are complex and underlying damage affecting vascular surface area may alter interpretation of tracer kinetic results.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Substância Branca , Idoso , Volume Sanguíneo , Barreira Hematoencefálica , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Efeitos Psicossociais da Doença , Humanos , Cinética , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Fatores de Risco , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA