Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
2.
Glob Chang Biol ; 30(4): e17258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629937

RESUMO

Forests, critical components of global ecosystems, face unprecedented challenges due to climate change. This study investigates the influence of functional diversity-as a component of biodiversity-to enhance long-term biomass of European forests in the context of changing climatic conditions. Using the next-generation flexible trait-based vegetation model, LPJmL-FIT, we explored the impact of functional diversity on long-term forest biomass under three different climate change scenarios (video abstract: https://www.pik-potsdam.de/~billing/video/2023/video_abstract_billing_et_al_LPJmLFIT.mp4). Four model set-ups were tested with varying degrees of functional diversity and best-suited functional traits. Our results show that functional diversity positively influences long-term forest biomass, particularly when climate warming is low (RCP2.6). Under these conditions, high-diversity simulations led to an approximately 18.2% increase in biomass compared to low-diversity experiments. However, as climate change intensity increased, the benefits of functional diversity diminished (RCP8.5). A Bayesian multilevel analysis revealed that both full leaf trait diversity and diversity of plant functional types contributed significantly to biomass enhancement under low warming scenarios in our model simulations. Under strong climate change, the presence of a mixture of different functional groups (e.g. summergreen and evergreen broad-leaved trees) was found more beneficial than the diversity of leaf traits within a functional group (e.g. broad-leaved summergreen trees). Ultimately, this research challenges the notion that planting only the most productive and climate-suited trees guarantees the highest future biomass and carbon sequestration. We underscore the importance of high functional diversity and the potential benefits of fostering a mixture of tree functional types to enhance long-term forest biomass in the face of climate change.


Assuntos
Ecossistema , Florestas , Biomassa , Teorema de Bayes , Folhas de Planta
3.
Sci Total Environ ; 947: 174378, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960201

RESUMO

Understanding the Amazon Rainforest's response to shifts in precipitation is paramount with regard to its sensitivity to climate change and deforestation. Studies using Dynamic Global Vegetation Models (DGVMs) typically only explore a range of socio-economically plausible pathways. In this study, we applied the state-of-the-art DGVM LPJmL to simulate the Amazon forest's response under idealized scenarios where precipitation is linearly decreased and subsequently increased between current levels and zero. Our results indicate a nonlinear but reversible relationship between vegetation Above Ground Biomass (AGB) and Mean Annual Precipitation (MAP), suggesting a threshold at a critical MAP value, below which vegetation biomass decline accelerates with decreasing MAP. We find that approaching this critical threshold is accompanied by critical slowing down, which can hence be expected to warn of accelerating biomass decline with decreasing rainfall. The critical precipitation threshold is lowest in the northwestern Amazon, whereas the eastern and southern regions may already be below their critical MAP thresholds. Overall, we identify the seasonality of precipitation and the potential evapotranspiration (PET) as the most important parameters determining the threshold value. While vegetation fires show little effect on the critical threshold and the biomass pattern in general, the ability of trees to adapt to water stress by investing in deep roots leads to increased biomass and a lower critical threshold in some areas in the eastern and southern Amazon where seasonality and PET are high. Our findings underscore the risk of Amazon forest degradation due to changes in the water cycle, and imply that regions that are currently characterized by higher water availability may exhibit heightened vulnerability to future drying.


Assuntos
Mudança Climática , Chuva , Floresta Úmida , Estações do Ano , Biomassa , Árvores , Brasil , Modelos Teóricos , Conservação dos Recursos Naturais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA