Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunology ; 169(1): 3-12, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36524435

RESUMO

Oncogene SET Domain Bifurcated 1 (SETDB1)/ESET, an H3K9 methyltransferase, was originally discovered over two decades ago; however, its function in the immune response was not first reported until 2011. SETDB1 immune functions include B cell maturation, T cell activity regulation, and immune escape in cancer cells. In B lymphocytes, SETDB1 mediates the transition from pro-B to pre-B cells and represses endogenous retroviruses (ERV) to encourage B cell lineage differentiation and maturation. SETDB1 alters T cell function by methylating IL-2 and IL-17 promoters and mediating T cell lineage commitment and development. In addition, SETDB1 plays a critical role in ERV silencing within a variety of immune cells, which can indirectly weaken the immune response. Although SETDB1 is critical for normal immune cell function, overexpression in cancer cells negatively impacts immune cell fights against cancer through decreased tumour immunogenicity. Within cancer cells, SETDB1 overexpression represses production and infiltration of antitumour immune cells, mediates immune escape through TE and ERV silencing, represses the type I interferon pathway, and interferes in immune checkpoint blockade (ICB) outcomes by regulation of PD-L1 expression and IFN signalling. In this review, we further discuss the immunological mechanisms of SETDB1 in normal and cancerous cells and its implications in cancer immunotherapy.


Assuntos
Retrovirus Endógenos , Imunoterapia , Neoplasias , Retrovirus Endógenos/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Domínios PR-SET , Humanos
2.
Proc Natl Acad Sci U S A ; 116(43): 21704-21714, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591235

RESUMO

Metastatic behavior varies significantly among breast cancers. Mechanisms explaining why the majority of breast cancer patients never develop metastatic outgrowth are largely lacking but could underlie the development of novel immunotherapeutic target molecules. Here we show interplay between nonmetastatic primary breast cancer and innate immune response, acting together to control metastatic progression. The primary tumor systemically recruits IFNγ-producing immune effector monocytes to the lung. IFNγ up-regulates Tmem173/STING in neutrophils and enhances their killing capacity. The immune effector monocytes and tumoricidal neutrophils target disseminated tumor cells in the lungs, preventing metastatic outgrowth. Importantly, our findings could underlie the development of immunotherapeutic target molecules that augment the function of immune effector monocytes and neutrophils.


Assuntos
Citotoxicidade Imunológica/imunologia , Neoplasias Mamárias Animais/patologia , Monócitos/imunologia , Neutrófilos/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Imunidade Inata/imunologia , Imunoterapia/métodos , Interferon gama/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica/imunologia , Metástase Neoplásica/prevenção & controle , Microambiente Tumoral/imunologia
3.
Am J Cancer Res ; 11(5): 1803-1827, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094655

RESUMO

SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1, ESET, KMT1E) is a H3K9 methyltransferase involved in gene silencing. In recent years, SETDB1 has been implicated as an oncogene in various cancers, highlighting a critical need to better understand the mechanisms underlying SETDB1 amplification, overexpression, and activation. In the following review, we first examine the history of SETDB1, starting from its discovery in 1999 and ending with recent findings. We follow with an outline of the structure and subcellular location of SETDB1, as well as potential mechanisms for regulation of its nuclear transport. Subsequently, we introduce SETDB1's various functions, including its roles in promyelocytic leukemia nuclear body (PML-NB) formation, the methylation and activation of Akt, the silencing of the androgen receptor (AR) gene, retroelement silencing, the inhibition of tumor suppressor p53, and its role in promoting intestinal differentiation and survival. The Cancer Cell Line Encyclopedia (CCLE) screened SETDB1 dependency in 796 cancer cell lines, identifying SETDB1 as a common essential gene in 531 of them, demonstrating that SETDB1 expression is critical for the survival of the majority of cancers. Therefore, we provide a detailed review of the oncogenic effects of SETDB1 overexpression in breast cancer, non-small cell lung cancer, prostate cancer, colorectal cancer, acute myeloid leukemia, glioma, melanoma, pancreatic ductal adenocarcinoma, liver cancer, nasopharyngeal carcinoma, gastric carcinoma, and endometrial cancer. Accordingly, we review several methods that have been used to target SETDB1, such as using Mithramycin A, Mithralog EC-8042, 3'-deazaneplanocin A (DZNep), and paclitaxel. Finally, we conclude by highlighting remaining gaps in knowledge and challenges surrounding SETDB1. Ultimately, our review captures the wide scope of findings on SETDB1's history, function, its implications in cancer, and provides suggestions for future research in the field.

4.
Nat Commun ; 7: 13050, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725631

RESUMO

Triple-negative (TN) breast cancers (ER-PR-HER2-) are highly metastatic and associated with poor prognosis. Within this subtype, invasive, stroma-rich tumours with infiltration of inflammatory cells are even more aggressive. The effect of myeloid cells on reactive stroma formation in TN breast cancer is largely unknown. Here, we show that primary human monocytes have a survival advantage, proliferate in vivo and develop into immunosuppressive myeloid cells expressing the myeloid-derived suppressor cell marker S100A9 only in a TN breast cancer environment. This results in activation of cancer-associated fibroblasts and expression of CXCL16, which we show to be a monocyte chemoattractant. We propose that this migratory feedback loop amplifies the formation of a reactive stroma, contributing to the aggressive phenotype of TN breast tumours. These insights could help select more suitable therapies targeting the stromal component of these tumours, and could aid prediction of drug resistance.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Quimiocina CXCL16/metabolismo , Fatores Quimiotáticos/farmacologia , Monócitos/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Fibroblastos Associados a Câncer/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Colágeno/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Imunossupressão , Camundongos Nus , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Solubilidade , Células Estromais/patologia , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA