Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nanotechnology ; 30(11): 112001, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30609414

RESUMO

Magnetic nanoparticles (MNPs), and in particular iron oxide nanoparticles (mainly magnetite and maghemite), are being widely used in the form of aqueous colloids for biomedical applications. In such colloids, nanoparticles tend to form assemblies, either aggregates, if the union is permanent, or agglomerates, if it is reversible. These clustering processes have a strong impact on the MNPs' properties that are often not well understood. In this review, the causes and consequences of MNPs aggregation/agglomeration are reviewed and discussed. Special attention has been paid to the impact of the MNPs aggregation/agglomeration on their magnetic properties and heating properties, when exposed to an alternating magnetic field in the frame of magnetic hyperthermia. In addition, a model system with MNPs of two different sizes coated with three different molecules oleic acid, meso-2, 3-dimercaptosuccinic acid and poly(maleic anhydride-alt-1-octadecene) has been characterized and the results used to support the ideas reviewed.

2.
Nanotechnology ; 26(20): 205101, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25927227

RESUMO

Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe2O3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe2O3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe2O3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses.


Assuntos
Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Galinhas , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Duodeno/patologia , Ingestão de Alimentos/efeitos dos fármacos , Compostos Férricos/metabolismo , Compostos Férricos/farmacocinética , Expressão Gênica/efeitos dos fármacos , Ferro/metabolismo
3.
Pharm Res ; 31(12): 3274-88, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24890197

RESUMO

PURPOSE: Tumor cells can be effectively inactivated by heating mediated by magnetic nanoparticles. However, optimized nanomaterials to supply thermal stress inside the tumor remain to be identified. The present study investigates the therapeutic effects of magnetic hyperthermia induced by superparamagnetic iron oxide nanoparticles on breast (MDA-MB-231) and pancreatic cancer (BxPC-3) xenografts in mice in vivo. METHODS: Superparamagnetic iron oxide nanoparticles, synthesized either via an aqueous (MF66; average core size 12 nm) or an organic route (OD15; average core size 15 nm) are analyzed in terms of their specific absorption rate (SAR), cell uptake and their effectivity in in vivo hyperthermia treatment. RESULTS: Exceptionally high SAR values ranging from 658 ± 53 W*gFe (-1) for OD15 up to 900 ± 22 W*gFe (-1) for MF66 were determined in an alternating magnetic field (AMF, H = 15.4 kA*m(-1) (19 mT), f = 435 kHz). Conversion of SAR values into system-independent intrinsic loss power (ILP, 6.4 ± 0.5 nH*m(2)*kg(-1) (OD15) and 8.7 ± 0.2 nH*m(2)*kg(-1) (MF66)) confirmed the markedly high heating potential compared to recently published data. Magnetic hyperthermia after intratumoral nanoparticle injection results in dramatically reduced tumor volume in both cancer models, although the applied temperature dosages measured as CEM43T90 (cumulative equivalent minutes at 43°C) are only between 1 and 24 min. Histological analysis of magnetic hyperthermia treated tumor tissue exhibit alterations in cell viability (apoptosis and necrosis) and show a decreased cell proliferation. CONCLUSIONS: Concluding, the studied magnetic nanoparticles lead to extensive cell death in human tumor xenografts and are considered suitable platforms for future hyperthermic studies.


Assuntos
Campos Eletromagnéticos , Hipertermia Induzida , Neoplasias Experimentais/terapia , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Compostos Férricos , Humanos , Antígeno Ki-67 , Camundongos , Nanopartículas , Neoplasias Experimentais/sangue , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nanomedicine ; 10(4): 733-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24333592

RESUMO

We have performed a series of in vitro tests proposed for the reliable assessment of safety associated with nanoparticles-cell interaction. A thorough analysis of toxicity of three different coating iron oxide nanoparticles on HeLa cells has been carried out including, methyl thiazol tetrazolium bromide (MTT) and Trypan blue exclusion tests, cell morphology observation by optical and Scanning Electron Microscopy (SEM), study of cytoskeletal components, analysis of cell cycle and the presence of reactive oxygen species (ROS). We have quantified magnetic nanoparticle internalization, determined possible indirect cell damages and related it to the nanoparticle coating. The results confirm a very low toxicity of the analyzed iron oxide nanoparticles into HeLa cells by multiple assays and pave the way for a more successful cancer diagnostic and treatment without secondary effects. FROM THE CLINICAL EDITOR: In this paper, three different iron oxide nanoparticles are studied and compared from the standpoint of safety and toxicity in HeLa cells, demonstrating low toxicity for each preparation, and paving the way to potential future clinical applications.


Assuntos
Compostos Férricos , Nanopartículas de Magnetita/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Compostos Férricos/química , Compostos Férricos/farmacologia , Células HeLa , Humanos , Nanopartículas de Magnetita/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo
5.
J Colloid Interface Sci ; 670: 73-85, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759270

RESUMO

HYPOTHESIS: Multicore flower-like iron oxide nanoparticles (IONPs) are among the best candidates for magnetic hyperthermia applications against cancers. However, they are rarely investigated in physiological environments and their efficacy against cancer cells has been even less studied. The combination of magnetic hyperthermia, using multicore IONPs, with selected bioactive molecules should lead to an enhanced activity against cancer cells. EXPERIMENTS: Multicore IONPs were synthesized by a seeded-growth thermal decomposition approach. Then, the cytotoxicity, cell uptake, and efficacy of the magnetic hyperthermia approach were studied with six cancer cell lines: PANC1 (pancreatic carcinoma), Mel202 (uveal melanoma), MCF7 (breast adenocarcinoma), MB231 (triple-negative breast cancer line), A549 (lung cancer), and HCT116 (colon cancer). Finally, IONPs were modified with a chemotherapeutic drug (SN38) and tumor suppressor microRNAs (miR-34a, miR-182, let-7b, and miR-137), to study their activity against cancer cells with and without combination with magnetic hyperthermia. FINDINGS: Two types of multicore IONPs with very good heating abilities under magnetic stimulation have been prepared. Their concentration-dependent cytotoxicity and internalization have been established, showing a strong dependence on the cell line and the nanoparticle type. Magnetic hyperthermia causes significant cell death that is dramatically enhanced in combination with the bioactive molecules.


Assuntos
Hipertermia Induzida , Nanopartículas Magnéticas de Óxido de Ferro , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/genética , Linhagem Celular Tumoral , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais , Terapia Combinada , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos
6.
Int J Hyperthermia ; 29(8): 768-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24001026

RESUMO

The final goal in magnetic hyperthermia research is to use nanoparticles in the form of a colloidal suspension injected into human beings for a therapeutic application. Therefore the challenge is not only to develop magnetic nanoparticles with good heating capacities, but also with good colloidal properties, long blood circulation time and with grafted ligands able to facilitate their specific internalisation in tumour cells. Significant advances have been achieved optimising the properties of the magnetic nanoparticles, showing extremely large specific absorption rate values that will contribute to a reduction in the concentration of the magnetic fluid that needs to be administered. In this review we show the effect of different characteristics of the magnetic particles, such as size, size distribution and shape, and the colloidal properties of their aqueous suspensions, such as hydrodynamic size and surface modification, on the heating capacity of the magnetic colloids.


Assuntos
Hipertermia Induzida , Campos Magnéticos , Nanopartículas , Animais , Temperatura Alta , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/terapia
7.
Mater Today Bio ; 23: 100817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37822453

RESUMO

Immunotherapy has emerged as a promising strategy to eradicate cancer cells. Particularly, the development of cancer vaccines to induce a potent and sustained antigen-specific T cell response has become a center of attention. Herein, we describe a novel immunotherapy based on magnetic nanoparticles (MNP) covalently modified with the OVA254-267 antigen and a CpG oligonucleotide via disulfide bonds. The MNP-CpG-COVA significantly enhances dendritic cell activation and CD8+ T cell antitumoral response against B16-OVA melanoma cells in vitro. Notably, the immune response induced by the covalently modified MNP is more potent and sustained over time than that triggered by the free components, highlighting the advantage of nanoformulations in immunotherapies. What is more, the nanoparticles are stable in the blood after in vivo administration and induce potent levels of systemic tumor-specific effector CD8 + T cells. Overall, our findings highlight the potential of covalently functionalized MNP to induce robust immune responses against mouse melanoma.

8.
Front Bioeng Biotechnol ; 11: 1191327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545884

RESUMO

The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.

9.
J Colloid Interface Sci ; 613: 447-460, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35051720

RESUMO

Stimuli-responsive nanomaterials are very attractive for biomedical applications. They can be activated through external stimuli or by the physico-chemical conditions present in cells or tissues. Here, we describe the preparation of hybrid iron oxide-manganese oxide core-satellite shell nanostructures that change their contrast mode in magnetic resonance imaging (MRI) from T2 to T1, after being internalized by cells. This occurs by the dissolution of the MnO2 of the shell, preserving intact the iron oxide at the core. First, we study the seeded-growth synthesis of iron oxide-manganese oxide nanoparticles studying the effect of varying the core size of the magnetic seeds and the concentration of the surfactant. This allows tuning the size and shape of the final hybrid nanostructure. Then, we show that the shell can be removed by a redox reaction with glutathione, which is naturally present inside the cells at much higher concentrations than outside the cells. Finally, the dissolution of the MnO2 shell and the change in the contrast mode is confirmed in cell cultures. After this process, the iron oxide nanoparticles at the core remain intact and are still active as heating mediators when an alternating magnetic field is applied.


Assuntos
Compostos de Manganês , Nanopartículas , Compostos Férricos , Imageamento por Ressonância Magnética , Óxidos
10.
Nanoscale ; 14(24): 8789-8796, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35678469

RESUMO

The potential of magnetic nanoparticles for acting as efficient catalysts, imaging tracers or heating mediators relays on their superparamagnetic behaviour under alternating magnetic fields. In spite of the relevance of this magnetic phenomenon, the identification of specific fingerprints to unequivocally assign superparamagnetic behaviour to nanomaterials is still lacking. Herein, we report on novel experimental and theoretical evidences related to the superparamagnetism observed in magnetic iron oxide nanoparticle suspensions at room temperature. AC magnetization measurements in a broad field frequency range from mHz to kHz and field intensities up to 40 kA m-1 unambiguously demonstrate the transition from superparamagnetic to blocked states at room temperature. Our experimental observations are supported by a theoretical model based on the stochastic Landau-Liftshitz-Gilbert equation. An empirical expression is proposed to determine the effective magnetic anisotropy from the field frequency value beyond which AC magnetization shows hysteretic behaviour. Our results significantly improve the understanding and description of the superparamagnetism of iron oxide nanoparticles, paving the way towards a more efficient exploitation of their unique magnetic properties.

11.
Pharmaceutics ; 14(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893782

RESUMO

The clinical implementation of magnetic hyperthermia has experienced little progress since the first clinical trial was completed in 2005. Some of the hurdles to overcome are the reliable production of magnetic nanoparticles with controlled properties and the control of the temperature at the target tissue in vivo. Here, forty samples of iron oxide superparamagnetic nanoparticles were prepared by similar methods and thoroughly characterized in terms of size, aggregation degree, and heating response. Selected samples were intratumorally administered in animals with subcutaneous xenografts of human pancreatic cancer. In vivo experiments showed that it is possible to control the rise in temperature by modulating the field intensity during in vivo magnetic hyperthermia protocols. The procedure does not require sophisticated materials and it can be easily implemented by researchers or practitioners working in magnetic hyperthermia therapies.

12.
Nanoscale ; 14(31): 11129-11138, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35904896

RESUMO

In this work, we describe the synthesis of magnetic nanoparticles composed of a maghemite core (MNP) and three different coatings (dextran, D-MNP; carboxymethyldextran, CMD-MNP; and dimercaptosuccinic acid, DMSA-MNP). Their interactions with red blood cells, plasma proteins, and macrophages were also assessed. CMD-MNP was selected for its good biosafety profile and for promoting a pro-inflammatory response in macrophages, which was associated with the nature of the coating. Thus, we proposed a smart miRNA delivery system using CMD-MNP as a carrier for cancer immunotherapy applications. Particularly, we prove that CMD-MNP-miRNA155 and CMD-MNP-miRNA125b nanoparticles can display a pro-inflammatory response in human macrophages by increasing the expression of CD80 and the levels of TNF-α and IL-6. Hence, our proposed miRNA-delivery nanosystem can be exploited as a new immunotherapeutic tool based on magnetic nanoparticles.


Assuntos
Nanopartículas de Magnetita , MicroRNAs , Nanopartículas , Humanos , Macrófagos , Magnetismo , Succímero
13.
Phys Chem Chem Phys ; 13(30): 13527-36, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21603700

RESUMO

Ionic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine. For water added during the synthesis of metallic nanoparticles, a decrease of the solubility in the ionic liquid was observed, showed by nanoparticles located at the interface between aqueous and ionic phases. When 1-octylamine is present during the synthesis, stable nanoparticles of a constant size are obtained. When 1-octylamine is added after the synthesis, aggregation of the ruthenium nanoparticles is observed. In order to explain these phenomena, we have explored the molecular interactions between the different species using (13)C-NMR and DOSY (Diffusional Order Spectroscopy) experiments, mixing calorimetry, surface tension measurements and molecular simulations. We conclude that the behaviour of the ruthenium nanoparticles in [C(1)C(4)Im][NTf(2)] in the presence of 1-octylamine depends on the interaction between the ligand and the nanoparticles in terms of the energetics but also of the structural arrangement of the amine at the nanoparticle's surface.

14.
Cancers (Basel) ; 13(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34439250

RESUMO

Magnetic nanoparticles (MNP) are employed as nanocarriers and in magnetic hyperthermia (MH) for the treatment of cancers. Herein, a smart drug delivery system composed of MNP functionalized with the cytotoxic drug gemcitabine (MNP-GEM) has been thoroughly evaluated. The linker employed is based on a disulfide bond and allows the controlled release of GEM under a highly reducing environment, which is frequently present in the cytoplasm of tumor cells. The stability, MH, and the interaction with plasma proteins of the nanoparticles are evaluated, highlighting their great potential for biological applications. Their cytotoxicity is assessed in three pancreatic cancer cell lines with different sensitivity to GEM, including the generation of reactive oxygen species (ROS), the effects on the cell cycle, and the mechanisms of cell death involved. Remarkably, the proposed nanocarrier is better internalized than unmodified nanoparticles, and it is particularly effective in PANC-1 cells, resistant to GEM, but not in non-tumoral keratinocytes. Additionally, its combination with MH produces a synergistic cytotoxic effect in all cancer cell lines tested. In conclusion, MNP-GEM presents a promising potential for treating pancreatic cancer, due to multiple parameters, such as reduced binding to plasma proteins, increased internalization, and synergistic activity when combined with MH.

15.
Nanoscale Adv ; 3(22): 6490-6502, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36133493

RESUMO

Heating mediated by iron oxide nanoparticles subjected to near infrared irradiation has recently gained lots of interest. The high optical loss values reported in combination with the optical technologies already existing in current clinical practices, have made optical heating mediated by iron oxide nanoparticles an attractive choice for treating internal or skin tumors. However, the identification of the relevant parameters and the influence of methodologies for quantifying the optical losses released by iron oxide nanoparticles are not fully clear. Here, we report on a systematic study of different intrinsic (size, shape, crystallinity, and iron oxidation state) and extrinsic (aggregation, concentration, intracellular environment and irradiation conditions) parameters involved in the photothermal conversion of iron oxide nanoparticles under near infrared irradiation. We have probed the temperature increments to determine the specific loss power of iron oxide nanoparticles with different sizes and shapes dispersed in colloidal suspensions or inside live breast cancer cells. Our results underline the relevance of crystal surface defects, aggregation, concentration, magnetite abundance, excitation wavelength and density power on the modulation of the photothermal conversion. Contrary to plasmonic or magnetic losses, no significant influence of nanoparticle size nor shape was observed on the optical losses released by the studied iron oxide nanoparticles. Interestingly, no significant differences of measured temperature increments and specific loss power values were either observed when nanoparticles were inside live cells or in colloidal dispersion. Our findings highlight the advantages of optical heat losses released by iron oxide nanoparticles for therapeutic applications.

16.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835651

RESUMO

Iron oxide nanoparticles (IONPs) are suitable materials for contrast enhancement in magnetic resonance imaging (MRI). Their potential clinical applications range from diagnosis to therapy and follow-up treatments. However, a deeper understanding of the interaction between IONPs, culture media and cells is necessary for expanding the application of this technology to different types of cancer therapies. To achieve new insights of these interactions, a set of IONPs were prepared with the same inorganic core and five distinct coatings, to study their aggregation and interactions in different physiological media, as well as their cell labelling efficiency. Then, a second set of IONPs, with six different core sizes and the same coating, were used to study how the core size affects cell labelling and MRI in vitro. Here, IONPs suspended in biological media experience a partial removal of the coating and adhesion of molecules. The FBS concentration alters the labelling of all types of IONPs and hydrodynamic sizes ≥ 300 nm provide the greatest labelling using the centrifugation-mediated internalization (CMI). The best contrast for MRI results requires a core size range between 12-14 nm coated with dimercaptosuccinic acid (DMSA) producing R2* values of 393.7 s-1 and 428.3 s-1, respectively. These findings will help to bring IONPs as negative contrast agents into clinical settings.

17.
Adv Mater ; 33(30): e2100077, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117667

RESUMO

Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.


Assuntos
Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocápsulas/química , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Temperatura Alta , Humanos , Hipertermia Induzida , Raios Infravermelhos , Campos Magnéticos , Magnetismo , Camundongos , Imagem Óptica , Terapia Fototérmica , Compostos de Prata/química
18.
Colloids Surf B Biointerfaces ; 194: 111178, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32531715

RESUMO

The antibacterial activity of hybrid γ-Fe2O3/Ag nanocomposites against the bacterial pathogens E. coli (Gram-negative) and S. aureus (Gram-positive) has been studied. Silver is a well-known bactericidal agent and γ-Fe2O3 nanoparticles release heat when they are exposed to alternating magnetic fields. The combination of both properties to fight infections has not been previously explored. The nanocomposites were synthesized through reduction of silver nitrate in the presence of pre-synthesized superparamagnetic γ-Fe2O3 nanoparticles. Changing systematically the ratio of γ-Fe2O3 and silver precursor and the temperature of the reaction allowed obtaining superparamagnetic nanocomposites with different Ag contents and particle sizes. The antibacterial activity of the samples was tested, and the minimum inhibitory concentrations and minimum bactericidal concentrations of the nanocomposites were determined to compare the microbicidal activity of the samples. It was found that it is related with the release of silver ions from the nanocomposites. Finally, we studied the combination of the bactericidal effect of silver and magnetic hyperthermia finding a synergetic effect between them when plates containing E. coli or S. aureus bacteria with γ-Fe2O3/Ag nanocomposites were subjected to an alternating magnetic field. This effect is related with an increase in the release of silver ions due to that heat dissipation.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Antibacterianos/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Prata/farmacologia , Staphylococcus aureus
19.
J Phys Chem Lett ; 11(6): 2182-2187, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32119551

RESUMO

Heat generation by pointlike structures is an appealing concept for its implications in nanotechnology and biomedicine. The way to pump energy that excites heat locally and the synthesis of nanostructures that absorb such energy are key issues in this endeavor. High-frequency alternating magnetic or near-infrared optical fields are used to induce heat in iron oxide nanoparticles, a combined solution that is being exploited in hyperthermia treatments. However, the temperature determination around a single iron oxide nanoparticle remains a challenge. We study the heat released from iron oxide nanostructures under near-infrared illumination on a one-by-one basis by optical tweezers. To measure the temperature, we follow the medium viscosity changes around the trapped particle as a function of the illuminating power, thus avoiding the use of thermal probes. Our results help interpret temperature, a statistical parameter, in the nanoscale and the concept of heat production by nanoparticles under thermal agitation.


Assuntos
Raios Infravermelhos/uso terapêutico , Fototerapia/métodos , Humanos , Nanopartículas de Magnetita/química
20.
J Colloid Interface Sci ; 578: 510-521, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540550

RESUMO

HYPOTHESIS: Superparamagnetic MnxFe3-xO4 nanoparticles are promising materials for applications in biomedicine and other fields. Small variations in the Mn/Fe ratio have a strong impact on the properties of the nanoparticles. Those variations may be caused by the synthesis itself and by common post-synthesis manipulations like surface modification. EXPERIMENTS: Mn-ferrite nanoparticles have been prepared changing systematically the Mn/Fe ratio of the metal precursors and repeating each reaction three times. Nanoparticles were subjected to surface modification with two different and typical molecules to stabilize them in aqueous media. The discrepancy in the Mn/Fe ratios of the precursors with the ones measured after the synthesis and the surface modification have been studied, as well as its impact on the saturation magnetization, blocking temperature, contrast enhancement for magnetic resonance imaging, magnetic heating, and on the cytotoxicity. FINDINGS: Mn is incorporated in the nanoparticles in a relatively lower amount than Fe and, as this report shows for the first time, both Mn and Fe ions leach out from the nanoparticles during the surface modification step. The blocking temperature decreases exponentially as the Mn/Fe ratio increases. The transverse and longitudinal relaxation times and the magnetic heating ability change appreciably even with small variations in the composition.


Assuntos
Nanopartículas , Cátions , Imageamento por Ressonância Magnética , Magnetismo , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA