Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Neurovirol ; 28(1): 27-34, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35025066

RESUMO

Proviral load (PVL) is one of the determining factors for the pathogenesis and clinical progression of the human T-lymphotropic virus type I (HTLV-1) infection. In the present study, we optimized a sensitive multiplex real-time PCR for the simultaneous detection and quantification of HTLV-1 proviral load and beta-globin gene as endogenous control. The values obtained for HTLV-1 PVL were used to monitor the clinical evolution in HTLV-1-infected individuals. A vector containing cloned DNA targets of the real-time PCR for the beta-globin gene and the HTLV-1pol region was constructed. For the reaction validation, we compared the amplification efficiency of the constructed vector and MT-2 cell line containing HTLV-1. The analytical sensitivity of the reaction was evaluated by the application of a standard curve with a high order of magnitude. PVL assay was evaluated on DNA samples of HTLV-1 seropositive individuals. The construct showed adequate amplification for the beta-globin and HTLV-1 pol genes when evaluated as multiplex real-time PCR (slope = 3.23/3.26, Y-intercept = 40.18/40.73, correlation coefficient r2 = 0.99/0.99, and efficiency = 103.98/102.78, respectively). The quantification of PVL using the MT-2 cell line was equivalent to the data obtained using the plasmidial curve (2.5 copies per cell). In HTLV-1-associatedmyelopathy/tropical spastic paraparesis patients, PVL was significantly higher (21315 ± 2154 copies/105 PBMC) compared to asymptomatic individuals (1253 ± 691 copies/105 PBMC). The obtained results indicate that the optimized HTLV-1 PVL assay using plasmidial curve can be applied for monitoring and follow-up of the progression of HTLV-1 disease. The use of a unique reference plasmid for both HTLV-1 and endogenous gene allows a robust and effective quantification of HTLV-1 PVL. In addition, the developed multiplex real-time PCR assay was efficient to be used as a tool to monitor HTLV-1-infected individuals.


Assuntos
Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , DNA Viral/análise , DNA Viral/genética , Infecções por HTLV-I/diagnóstico , Infecções por HTLV-I/genética , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Leucócitos Mononucleares , Paraparesia Espástica Tropical/diagnóstico , Paraparesia Espástica Tropical/genética , Provírus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Carga Viral/métodos , Globinas beta/análise , Globinas beta/genética
2.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678183

RESUMO

The endothelial-to-mesenchymal transition (EndMT) is a biological process where endothelial cells (ECs) acquire a fibroblastic phenotype after concomitant loss of the apical-basal polarity and intercellular junction proteins. This process is critical to embryonic development and is involved in diseases such as fibrosis and tumor progression. The signaling pathway of the transforming growth factor ß (TGF-ß) is an important molecular route responsible for EndMT activation. However, it is unclear whether the anatomic location of endothelial cells influences the activation of molecular pathways responsible for EndMT induction. Our study investigated the molecular mechanisms and signaling pathways involved in EndMT induced by TGF-ß2 in macrovascular ECs obtained from different sources. For this purpose, we used four types of endothelial cells (coronary artery endothelial cells, CAECs; primary aortic endothelial cells PAECs; human umbilical vein endothelia cells, HUVECs; and human pulmonary artery endothelial cells, HPAECs) and stimulated with 10 ng/mL of TGF-ß2. We observed that among the ECs analyzed in this study, PAECs showed the best response to the TGF-ß2 treatment, displaying phenotypic changes such as loss of endothelial marker and acquisition of mesenchymal markers, which are consistent with the EndMT activation. Moreover, the PAECs phenotypic transition was probably triggered by the extracellular signal⁻regulated kinases 1/2 (ERK1/2) signaling pathway activation. Therefore, the anatomical origin of ECs influences their ability to undergo EndMT and the selective inhibition of the ERK pathway may suppress or reverse the progression of diseases caused or aggravated by the involvement EndMT activation.


Assuntos
Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
3.
Transl Res ; 255: 109-118, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36526155

RESUMO

Vertical transmission of Chikungunya virus (CHIKV) has been reported in humans, but the transmission routes have not been completely understood, and experimental animal models are needed to enable detailed investigation of the transmission and pathogenesis of congenital infections. The intertwining of immune response and virus components at the gestation/breastfeeding interfaces between mother and fetus/newborn may have effects during the offspring development. An experimental model of CHIKV was established by infecting pregnant BALB/c female mice that enabled confirmation that dams inoculated up to the 10th gestational day transmit CHIKV transplacentally to approximately 8.4% of the fetuses, resulting in severe teratogenic effects. CHIKV neutralizing antibodies were detected in sera from adult mice born to healthy females and breastfed by CHIKV-infected dams, while no neutralization was detected in sera from animals born to CHIKV-infected dams. Moreover, adult mice born to healthy dams and cross-fostered for breastfeeding by CHIKV-infected dams were resistant to challenge with CHIKV on the 90th day after birth. The animals also had reduced viral loads in brain and spleen as compared to controls. There was expression of fluorescent CHIKV non-structural protein, and detection of viral RNA by RT-PCR in breast tissue from infected dams. CHIKV RNA and proteins were also detected in breast milk retrieved from the stomachs of recently fed newborns. The experimental results were also complemented by the finding of CHIKV RNA in 6% of colostrum samples from healthy lactating women in a CHIKV-endemic area. Breastfeeding induces immune protection to challenge with CHIKV in mice.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Gravidez , Feminino , Animais , Camundongos , Vírus Chikungunya/genética , Aleitamento Materno , Lactação , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA