Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 264(2): 148-159, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39092716

RESUMO

Colorectal cancer (CRC) is one of the most frequently occurring cancers, but prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this study, we aimed to investigate in more detail the spatial relationship between intratumoural T cells, cancer cells, and cancer cell hallmarks as prognostic biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging of 56 protein markers at single-cell resolution on resected fixed tissue from stage III CRC patients who received adjuvant 5-fluorouracil (5FU)-based chemotherapy. Images underwent segmentation for tumour, stroma, and immune cells, and cancer cell 'state' protein marker expression was quantified at a cellular level. We developed a Python package for estimation of spatial proximity, nearest neighbour analysis focusing on cancer cell-T-cell interactions at single-cell level. In our discovery cohort (Memorial Sloan Kettering samples), we processed 462 core samples (total number of cells: 1,669,228) from 221 adjuvant 5FU-treated stage III patients. The validation cohort (Huntsville Clearview Cancer Center samples) consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC patients. While there were trends for an association between the percentage of cytotoxic T cells (across the whole cancer core), it did not reach significance (discovery cohort: p = 0.07; validation cohort: p = 0.19). We next utilised our region-based nearest neighbour approach to determine the spatial relationships between cytotoxic T cells, helper T cells, and cancer cell clusters. In both cohorts, we found that shorter distance between cytotoxic T cells, T helper cells, and cancer cells was significantly associated with increased disease-free survival. An unsupervised trained model that clustered patients based on the median distance between immune cells and cancer cells, as well as protein expression profiles, successfully classified patients into low-risk and high-risk groups (discovery cohort: p = 0.01; validation cohort: p = 0.003). © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Fluoruracila , Linfócitos do Interstício Tumoral , Estadiamento de Neoplasias , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Linfócitos do Interstício Tumoral/metabolismo , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Fluoruracila/uso terapêutico , Fluoruracila/farmacologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Prognóstico , Microambiente Tumoral/imunologia , Quimioterapia Adjuvante
2.
Br J Cancer ; 130(11): 1809-1818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38532103

RESUMO

BACKGROUND: Existing colorectal cancer subtyping methods were generated without much consideration of potential differences in expression profiles between colon and rectal tissues. Moreover, locally advanced rectal cancers at resection often have received neoadjuvant chemoradiotherapy which likely has a significant impact on gene expression. METHODS: We collected mRNA expression profiles for rectal and colon cancer samples (n = 2121). We observed that (i) Consensus Molecular Subtyping (CMS) had a different prognosis in treatment-naïve rectal vs. colon cancers, and (ii) that neoadjuvant chemoradiotherapy exposure produced a strong shift in CMS subtypes in rectal cancers. We therefore clustered 182 untreated rectal cancers to find rectal cancer-specific subtypes (RSSs). RESULTS: We identified three robust subtypes. We observed that RSS1 had better, and RSS2 had worse disease-free survival. RSS1 showed high expression of MYC target genes and low activity of angiogenesis genes. RSS2 exhibited low regulatory T cell abundance, strong EMT and angiogenesis signalling, and high activation of TGF-ß, NF-κB, and TNF-α signalling. RSS3 was characterised by the deactivation of EGFR, MAPK and WNT pathways. CONCLUSIONS: We conclude that RSS subtyping allows for more accurate prognosis predictions in rectal cancers than CMS subtyping and provides new insight into targetable disease pathways within these subtypes.


Assuntos
Neoplasias Retais , Humanos , Neoplasias Retais/genética , Neoplasias Retais/patologia , Neoplasias Retais/terapia , Neoplasias Retais/classificação , Prognóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/classificação , Perfilação da Expressão Gênica , Terapia Neoadjuvante
3.
Br J Cancer ; 129(8): 1327-1338, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37620410

RESUMO

BACKGROUND: Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). METHODS: DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. RESULTS: Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. CONCLUSION: GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Biomarcadores , DNA/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Bioinformatics ; 38(2): 520-526, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34601553

RESUMO

MOTIVATION: Multiplexed immunofluorescence bioimaging of single-cells and their spatial organization in tissue holds great promise to the development of future precision diagnostics and therapeutics. Current multiplexing pipelines typically involve multiple rounds of immunofluorescence staining across multiple tissue slides. This introduces experimental batch effects that can hide underlying biological signal. It is important to have robust algorithms that can correct for the batch effects while not introducing biases into the data. Performance of data normalization methods can vary among different assay pipelines. To evaluate differences, it is critical to have a ground truth dataset that is representative of the assay. RESULTS: A new immunoFLuorescence Image NOrmalization method is presented and evaluated against alternative methods and workflows. Multiround immunofluorescence staining of the same tissue with the nuclear dye DAPI was used to represent virtual slides and a ground truth. DAPI was restained on a given tissue slide producing multiple images of the same underlying structure but undergoing multiple representative tissue handling steps. This ground truth dataset was used to evaluate and compare multiple normalization methods including median, quantile, smooth quantile, median ratio normalization and trimmed mean of the M-values. These methods were applied in both an unbiased grid object and segmented cell object workflow to 24 multiplexed biomarkers. An upper quartile normalization of grid objects in log space was found to obtain almost equivalent performance to directly normalizing segmented cell objects by the middle quantile. The developed grid-based technique was then applied with on-slide controls for evaluation. Using five or fewer controls per slide can introduce biases into the data. Ten or more on-slide controls were able to robustly correct for batch effects. AVAILABILITY AND IMPLEMENTATION: The data underlying this article along with the FLINO R-scripts used to perform the evaluation of image normalizations methods and workflows can be downloaded from https://github.com/GE-Bio/FLINO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Núcleo Celular , Viés , Imunofluorescência
5.
J Neurooncol ; 163(2): 327-338, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37237151

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain cancer that typically results in death in the first 15 months after diagnosis. There have been limited advances in finding new treatments for GBM. In this study, we investigated molecular differences between patients with extremely short (≤ 9 months, Short term survivors, STS) and long survival (≥ 36 months, Long term survivors, LTS). METHODS: Patients were selected from an in-house cohort (GLIOTRAIN-cohort), using defined inclusion criteria (Karnofsky score > 70; age < 70 years old; Stupp protocol as first line treatment, IDH wild type), and a multi-omic analysis of LTS and STS GBM samples was performed. RESULTS: Transcriptomic analysis of tumour samples identified cilium gene signatures as enriched in LTS. Moreover, Immunohistochemical analysis confirmed the presence of cilia in the tumours of LTS. Notably, reverse phase protein array analysis (RPPA) demonstrated increased phosphorylated GAB1 (Y627), SRC (Y527), BCL2 (S70) and RAF (S338) protein expression in STS compared to LTS. Next, we identified 25 unique master regulators (MR) and 13 transcription factors (TFs) belonging to ontologies of integrin signalling and cell cycle to be upregulated in STS. CONCLUSION: Overall, comparison of STS and LTS GBM patients, identifies novel biomarkers and potential actionable therapeutic targets for the management of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Idoso , Glioblastoma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Sobreviventes
6.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958662

RESUMO

Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells' molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as "adaptive" (ADA) or "non-adaptive" (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor's ability to survive. Depending on the tumor's adaptability potential, subpopulations with acquired resistance mechanisms may arise.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Fenótipo , Genômica , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica
7.
Gut ; 71(8): 1600-1612, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497144

RESUMO

OBJECTIVES: Transcriptomic-based subtyping, consensus molecular subtyping (CMS) and colorectal cancer intrinsic subtyping (CRIS) identify a patient subpopulation with mesenchymal traits (CMS4/CRIS-B) and poorer outcome. Here, we investigated the relationship between prevalence of Fusobacterium nucleatum (Fn) and Fusobacteriales, CMS/CRIS subtyping, cell type composition, immune infiltrates and host contexture to refine patient stratification and to identify druggable context-specific vulnerabilities. DESIGN: We coupled cell culture experiments with characterisation of Fn/Fusobacteriales prevalence and host biology/microenviroment in tumours from two independent colorectal cancer patient cohorts (Taxonomy: n=140, colon and rectal cases of The Cancer Genome Atlas (TCGA-COAD-READ) cohort: n=605). RESULTS: In vitro, Fn infection induced inflammation via nuclear factor kappa-light-chain-enhancer of activated B cells/tumour necrosis factor alpha in HCT116 and HT29 cancer cell lines. In patients, high Fn/Fusobacteriales were found in CMS1, microsatellite unstable () tumours, with infiltration of M1 macrophages, reduced M2 macrophages, and high interleukin (IL)-6/IL-8/IL-1ß signalling. Analysis of the Taxonomy cohort suggested that Fn was prognostic for CMS4/CRIS-B patients, despite having lower Fn load than CMS1 patients. In the TCGA-COAD-READ cohort, we likewise identified a differential association between Fusobacteriales relative abundance and outcome when stratifying patients in mesenchymal (either CMS4 and/or CRIS-B) versus non-mesenchymal (neither CMS4 nor CRIS-B). Patients with mesenchymal tumours and high Fusobacteriales had approximately twofold higher risk of worse outcome. These associations were null in non-mesenchymal patients. Modelling the three-way association between Fusobacteriales prevalence, molecular subtyping and host contexture with logistic models with an interaction term disentangled the pathogen-host signalling relationship and identified aberrations (including NOTCH, CSF1-3 and IL-6/IL-8) as candidate targets. CONCLUSION: This study identifies CMS4/CRIS-B patients with high Fn/Fusobacteriales prevalence as a high-risk subpopulation that may benefit from therapeutics targeting mesenchymal biology.


Assuntos
Neoplasias Colorretais , Neoplasias Colorretais/genética , Fusobacterium nucleatum , Humanos , Interleucina-8 , Prevalência , Prognóstico
8.
Mod Pathol ; 35(4): 564-576, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34732839

RESUMO

Colorectal cancer (CRC) has one of the highest cancer incidences and mortality rates. In stage III, postoperative chemotherapy benefits <20% of patients, while more than 50% will develop distant metastases. Biomarkers for identification of patients at increased risk of disease recurrence following adjuvant chemotherapy are currently lacking. In this study, we assessed immune signatures in the tumor and tumor microenvironment (TME) using an in situ multiplexed immunofluorescence imaging and single-cell analysis technology (Cell DIVETM) and evaluated their correlations with patient outcomes. Tissue microarrays (TMAs) with up to three 1 mm diameter cores per patient were prepared from 117 stage III CRC patients treated with adjuvant fluoropyrimidine/oxaliplatin (FOLFOX) chemotherapy. Single sections underwent multiplexed immunofluorescence staining for immune cell markers (CD45, CD3, CD4, CD8, FOXP3, PD1) and tumor/cell segmentation markers (DAPI, pan-cytokeratin, AE1, NaKATPase, and S6). We used annotations and a probabilistic classification algorithm to build statistical models of immune cell types. Images were also qualitatively assessed independently by a Pathologist as 'high', 'moderate' or 'low', for stromal and total immune cell content. Excellent agreement was found between manual assessment and total automated scores (p < 0.0001). Moreover, compared to single markers, a multi-marker classification of regulatory T cells (Tregs: CD3+/CD4+FOXP3+/PD1-) was significantly associated with disease-free survival (DFS) and overall survival (OS) (p = 0.049 and 0.032) of FOLFOX-treated patients. Our results also showed that PD1- Tregs rather than PD1+ Tregs were associated with improved survival. These findings were supported by results from an independent FOLFOX-treated cohort of 191 stage III CRC patients, where higher PD1- Tregs were associated with an increase overall survival (p = 0.015) for CD3+/CD4+/FOXP3+/PD1-. Overall, compared to single markers, multi-marker classification provided more accurate quantitation of immune cell types with stronger correlations with outcomes.


Assuntos
Neoplasias Colorretais , Análise de Célula Única , Subpopulações de Linfócitos T , Biomarcadores Tumorais , Quimioterapia Adjuvante , Neoplasias Colorretais/patologia , Humanos , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Prognóstico , Subpopulações de Linfócitos T/citologia , Microambiente Tumoral
9.
Ann Surg Oncol ; 28(12): 7999-8006, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33876348

RESUMO

BACKGROUND: Immune checkpoint inhibition has demonstrated success in overcoming tumor-mediated immune suppression in several types of cancer. However, its clinical use is limited to a small subset of colorectal cancer (CRC) patients, and response is highly variable between CRC subtypes. This study aimed to determine the profile of immune checkpoints and factors associated with immune checkpoint inhibitor response in mucinous CRC. METHODS: Gene expression data from CRC was extracted from the TCGA PanCanAtlas data-freeze release. Gene expression data were reported as batch-corrected and normalized RNA expression derived from RNA-Seq quantification. Clinical, pathologic, and transcriptomic data were compared between mucinous and non-mucinous CRC cohorts. RESULTS: The 557 cases of CRC eligible for inclusion in this study comprised 486 cases of non-mucinous CRC (87.3 %) and 71 cases of mucinous CRC (12.7 %). High correlation was observed in the expression of the included immune checkpoints. Significantly higher expression of programmed cell death protein 1 ligand (PD-L1) and T cell immunoglobulin and mucin domain 3 (TIM-3) was observed in mucinous CRC than in non-mucinous CRC. In a multiple regression model, significant contributors to the prediction of TIM-3 gene expression were microsatellite instability (MSI) (unstandardized regression coefficient [B] = 1.223; p < 0.001), stage (American Joint Committee on Cancer [AJCC] 2; B = 0.423; p < 0.05), and mucinous status (B = 0.591; p < 0.01). CONCLUSION: Expression of TIM-3, an emerging immune checkpoint inhibition target, was significantly higher in mucinous CRC, and expression was predicted by mucinous status independently of MSI. These findings should prompt investigation of immune checkpoint signaling in the mucinous tumor microenvironment to clarify the potential for immune checkpoint inhibition in mucinous CRC.


Assuntos
Neoplasias Colorretais , Receptor Celular 2 do Vírus da Hepatite A , Instabilidade de Microssatélites , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Receptor Celular 2 do Vírus da Hepatite A/genética , Humanos , Estadiamento de Neoplasias , Microambiente Tumoral/genética
10.
Int J Cancer ; 147(10): 2891-2901, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32700762

RESUMO

Antibodies targeting the human epidermal growth factor receptor (EGFR) are used for the treatment of RAS wild-type metastatic colorectal cancer. A significant proportion of patients remains unresponsive to this therapy. Here, we performed a reverse-phase protein array-based (phospho)protein analysis of 63 KRAS, NRAS, BRAF and PIK3CA wild-type metastatic CRC tumours. Responses of tumours to anti-EGFR therapy with cetuximab were recorded in patient-derived xenograft (PDX) models. Unsupervised hierarchical clustering of pretreatment tumour tissue identified three clusters, of which Cluster C3 was exclusively composed of responders. Clusters C1 and C2 exhibited mixed responses. None of the three protein clusters exhibited a significant correlation with transcriptome-based subtypes. Analysis of protein signatures across all PDXs identified 14 markers that discriminated cetuximab-sensitive and cetuximab-resistant tumours: PDK1 (S241), caspase-8, Shc (Y317), Stat3 (Y705), p27, GSK-3ß (S9), HER3, PKC-α (S657), EGFR (Y1068), Akt (S473), S6 ribosomal protein (S240/244), HER3 (Y1289), NF-κB-p65 (S536) and Gab-1 (Y627). Least absolute shrinkage and selection operator and binominal logistic regression analysis delivered refined protein signatures for predicting response to cetuximab. (Phospo-)protein analysis of matched pretreated and posttreated models furthermore showed significant reduction of Gab-1 (Y627) and GSK-3ß (S9) exclusively in responding models, suggesting novel targets for treatment.


Assuntos
Cetuximab/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/secundário , Fosfoproteínas/metabolismo , Proteômica/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Análise por Conglomerados , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Fosfoproteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Aprendizado de Máquina não Supervisionado , Ensaios Antitumorais Modelo de Xenoenxerto
11.
BMC Cancer ; 19(1): 1092, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718568

RESUMO

BACKGROUND: The evasion of apoptosis is a hallmark of cancer. Understanding this process holistically and overcoming apoptosis resistance is a goal of many research teams in order to develop better treatment options for cancer patients. Efforts are also ongoing to personalize the treatment of patients. Strategies to confirm the therapeutic efficacy of current treatments or indeed to identify potential novel additional options would be extremely beneficial to both clinicians and patients. In the past few years, system medicine approaches have been developed that model the biochemical pathways of apoptosis. These systems tools incorporate and analyse the complex biological networks involved. For their successful integration into clinical practice, it is mandatory to integrate systems approaches with routine clinical and histopathological practice to deliver personalized care for patients. RESULTS: We review here the development of system medicine approaches that model apoptosis for the treatment of cancer with a specific emphasis on the aggressive brain cancer, glioblastoma. CONCLUSIONS: We discuss the current understanding in the field and present new approaches that highlight the potential of system medicine approaches to influence how glioblastoma is diagnosed and treated in the future.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico , Glioblastoma/terapia , Biologia de Sistemas/métodos , Apoptose/genética , Biomarcadores Tumorais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/mortalidade , Gerenciamento Clínico , Suscetibilidade a Doenças , Glioblastoma/etiologia , Glioblastoma/mortalidade , Humanos , Modelos Biológicos , Avaliação de Resultados em Cuidados de Saúde , Medicina de Precisão/métodos , Prognóstico
12.
Gut ; 66(12): 2141-2148, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27663504

RESUMO

OBJECTIVE: The mitochondrial apoptosis pathway is controlled by an interaction of multiple BCL-2 family proteins, and plays a key role in tumour progression and therapy responses. We assessed the prognostic potential of an experimentally validated, mathematical model of BCL-2 protein interactions (DR_MOMP) in patients with stage III colorectal cancer (CRC). DESIGN: Absolute protein levels of BCL-2 family proteins were determined in primary CRC tumours collected from n=128 resected and chemotherapy-treated patients with stage III CRC. We applied DR_MOMP to categorise patients as high or low risk based on model outputs, and compared model outputs with known prognostic factors (T-stage, N-stage, lymphovascular invasion). DR_MOMP signatures were validated on protein of n=156 patients with CRC from the Cancer Genome Atlas (TCGA) project. RESULTS: High-risk stage III patients identified by DR_MOMP had an approximately fivefold increased risk of death compared with patients identified as low risk (HR 5.2, 95% CI 1.4 to 17.9, p=0.02). The DR_MOMP signature ranked highest among all molecular and pathological features analysed. The prognostic signature was validated in the TCGA colon adenocarcinoma (COAD) cohort (HR 4.2, 95% CI 1.1 to 15.6, p=0.04). DR_MOMP also further stratified patients identified by supervised gene expression risk scores into low-risk and high-risk categories. BCL-2-dependent signalling critically contributed to treatment responses in consensus molecular subtypes 1 and 3, linking for the first time specific molecular subtypes to apoptosis signalling. CONCLUSIONS: DR_MOMP delivers a system-based biomarker with significant potential as a prognostic tool for stage III CRC that significantly improves established histopathological risk factors.


Assuntos
Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Adulto , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Sistemas de Apoio a Decisões Clínicas , Feminino , Humanos , Metástase Linfática , Masculino , Estadiamento de Neoplasias , Prognóstico , Medição de Risco , Taxa de Sobrevida
13.
Gut Microbes ; 16(1): 2350149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709233

RESUMO

Mucinous colorectal cancer (CRC) is a common histological subtype of colorectal adenocarcinoma, associated with a poor response to chemoradiotherapy. The commensal facultative anaerobes fusobacteria, have been associated with poor prognosis specifically in mesenchymal CRC. Interestingly, fusobacterial infection is especially prevalent in mucinous CRC. The objective of this study was therefore to increase our understanding of beneficial and detrimental effects of fusobacterial infection, by contrasting host cell signaling and immune responses in areas of high vs. low infection, using mucinous rectal cancer as a clinically relevant example. We employed spatial transcriptomic profiling of 106 regions of interest from 8 mucinous rectal cancer samples to study gene expression in the epithelial and immune segments across regions of high versus low fusobacterial infection. Fusobacteria high regions were associated with increased oxidative stress, DNA damage, and P53 signaling. Meanwhile regions of low fusobacterial prevalence were characterized by elevated JAK-STAT, Il-17, Il-1, chemokine and TNF signaling. Immune masks within fusobacterial high regions were characterized by elevated proportions of cytotoxic (CD8+) T cells (p = 0.037), natural killer (NK) cells (p < 0.001), B-cells (p < 0.001), and gamma delta T cells (p = 0.003). Meanwhile, fusobacteria low regions were associated with significantly greater M2 macrophage (p < 0.001), fibroblast (p < 0.001), pericyte (p = 0.002), and endothelial (p < 0.001) counts.


Assuntos
Dano ao DNA , Perfilação da Expressão Gênica , Neoplasias Retais , Transdução de Sinais , Humanos , Neoplasias Retais/genética , Neoplasias Retais/imunologia , Neoplasias Retais/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Transcriptoma , Idoso
14.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38352309

RESUMO

Colorectal cancer (CRC) is one of the most frequently occurring cancers, but prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this study, we aimed to investigate in more detail the spatial relationship between intratumoural T cells, cancer cells, and cancer cell hallmarks, as prognostic biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging of 56 protein markers at single cell resolution on resected fixed tissue from stage III CRC patients who received adjuvant 5-fluorouracil-based chemotherapy. Images underwent segmentation for tumour, stroma and immune cells, and cancer cell 'state' protein marker expression was quantified at a cellular level. We developed a Python package for estimation of spatial proximity, nearest neighbour analysis focusing on cancer cell - T cell interactions at single-cell level. In our discovery cohort (MSK), we processed 462 core samples (total number of cells: 1,669,228) from 221 adjuvant 5FU-treated stage III patients. The validation cohort (HV) consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC patients. While there were trends for an association between percentage of cytotoxic T cells (across the whole cancer core), it did not reach significance (Discovery cohort: p = 0.07, Validation cohort: p = 0.19). We next utilized our region-based nearest neighbourhood approach to determine the spatial relationships between cytotoxic T cells, helper T cells and cancer cell clusters. In the both cohorts, we found that lower distance between cytotoxic T cells, T helper cells and cancer cells was significantly associated with increased disease-free survival. An unsupervised trained model that clustered patients based on the median distance between immune cells and cancer cells, as well as protein expression profiles, successfully classified patients into low-risk and high-risk groups (Discovery cohort: p = 0.01, Validation cohort: p = 0.003).

15.
J Mol Med (Berl) ; 101(7): 829-841, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37171483

RESUMO

There is currently an urgent need to identify factors predictive of immunogenicity in colorectal cancer (CRC). Mucinous CRC is a distinct histological subtype of CRC, associated with a poor response to chemotherapy. Recent evidence suggests the commensal facultative anaerobe Fusobacterium may be especially prevalent in mucinous CRC. The objectives of this study were to assess the association of Fusobacterium abundance with immune cell composition and prognosis in mucinous CRC. Our study included two independent colorectal cancer patient cohorts, The Cancer Genome Atlas (TCGA) cohort, and a cohort of rectal cancers from the Beaumont RCSI Cancer Centre (BRCC). Multiplexed immunofluorescence staining of a tumour microarray (TMA) from the BRCC cohort was undertaken using Cell DIVE technology. Our cohorts included 87 cases (13.3%) of mucinous and 565 cases (86.7%) of non-mucinous CRC. Mucinous CRC in the TCGA dataset was associated with an increased proportion of CD8 + lymphocytes (p = 0.018), regulatory T-cells (p = 0.001) and M2 macrophages (p = 0.001). In the BRCC cohort, mucinous RC was associated with enhanced CD8 + lymphocyte (p = 0.022), regulatory T-cell (p = 0.047), and B-cell (p = 0.025) counts. High Fusobacterium abundance was associated with an increased proportion of CD4 + lymphocytes (p = 0.031) and M1 macrophages (p = 0.006), whilst M2 macrophages (p = 0.043) were under-represented in this cohort. Patients with increased Fusobacterium relative abundance in our mucinous CRC TCGA cohort tended to have better clinical outcomes (DSS: likelihood ratio p = 0.04, logrank p = 0.052). Fusobacterium abundance may be associated with improved outcomes in mucinous CRC, possibly due to a modulatory effect on the host immune response. KEY MESSAGES: • Increased Fusobacterium relative abundance was not found to be associated with microsatellite instability in mucinous CRC. • Increased Fusobacterium relative abundance was associated with an M2/M1 macrophage switch, which is especially significant in mucinous CRC, where M2 macrophages are overexpressed. • Increased Fusobacterium relative abundance was associated with a significant improvement in disease specific survival in mucinous CRC. • Our findings were validated at a protein level within our own in house mucinous and non-mucinous rectal cancer cohorts.


Assuntos
Neoplasias Colorretais , Neoplasias Retais , Humanos , Fusobacterium/genética , Neoplasias Colorretais/metabolismo , Instabilidade de Microssatélites , Macrófagos/metabolismo
16.
Front Cell Dev Biol ; 10: 893677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238683

RESUMO

Metabolic reprogramming is a hallmark of cancer. Somatic mutations in genes involved in oncogenic signaling pathways, including KRAS and TP53, rewire the metabolic machinery in cancer cells. We here set out to determine, at the single cell level, metabolic signatures in human colon cancer cells engineered to express combinations of activating KRAS gene mutations and TP53 gene deletions. Specifically, we explored how somatic mutations in these genes and substrate availability (lactate, glucose, substrate deprivation) from the extracellular microenvironment affect bioenergetic parameters, including cellular ATP, NADH and mitochondrial membrane potential dynamics. Employing cytosolic and mitochondrial FRET-based ATP probes, fluorescent NADH sensors, and the membrane-permeant cationic fluorescent probe TMRM in HCT-116 cells as a model system, we observed that TP53 deletion and KRAS mutations drive a shift in metabolic signatures enabling lactate to become an efficient metabolite to replenish both ATP and NADH following nutrient deprivation. Intriguingly, cytosolic, mitochondrial and overall cellular ATP measurements revealed that, in WT KRAS cells, TP53 deficiency leads to an enhanced ATP production in the presence of extracellular lactate and glucose, and to the greatest increase in ATP following a starvation period. On the other hand, oncogenic KRAS in TP53-deficient cells reversed the alterations in cellular ATP levels. Moreover, cell population measurements of mitochondrial and glycolytic metabolism using a Seahorse analyzer demonstrated that WT KRAS TP53-silenced cells display an increase of the basal respiration and tightly-coupled mitochondria, in the presence of glucose as substrate, compared to TP53 competent cells. Furthermore, cells possessing oncogenic KRAS, independently of TP53 status, showed less pronounced mitochondrial membrane potential changes in response to metabolic nutrients. Furthermore, analysis of cytosolic and mitochondrial NADH levels revealed that the simultaneous presence of TP53 deletion and oncogenic KRAS showed the most pronounced alteration in cytosolic and mitochondrial NADH during metabolic stress. In conclusion, our findings demonstrate how activating KRAS mutation and loss of TP53 remodel cancer metabolism and lead to alterations in bioenergetics under metabolic stress conditions by modulating cellular ATP production, NADH oxidation, mitochondrial respiration and function.

17.
Front Oncol ; 12: 815001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912268

RESUMO

Background: Mucinous colorectal cancer (CRC) represents 10% of all CRC and is associated with chemotherapy resistance. This study aimed to determine expression of apoptosis and necroptosis mediators in mucinous CRC. Methods: RNA gene expression data were extracted from TCGA. Protein levels in 14 mucinous and 39 non-mucinous tumors were measured by multiplexed immunofluorescence. Levels of apoptosis and necroptosis signalling proteins were analysed in SW1463 (mucinous rectal), SW837 (non-mucinous rectal), LS174T (mucinous colon) and HCT116 (non-mucinous colon) cell lines by western blot. Cell death was investigated by flow cytometry measurement of propidium iodide stained cells. Results: High cleaved-Caspase 3 expression was noted in resected mucinous tumors. Western blot identified alterations in apoptosis proteins in mucinous CRC, most prominently downregulation of Bcl-xL protein levels (p=0.029) which was also observed at the mRNA level in patients by analysis of TCGA gene expression data (p<0.001). Treatment with 5-FU did not significantly elevate cell death in mucinous cells, while non-mucinous cells showed robust cell death responses. However, 5-FU-induced phosphorylation of MLKL in mucinous cancer cells, suggestive of a switch to necroptotic cell death signaling. Conclusion: Apoptotic and necroptotic mediators are differentially expressed in mucinous and non-mucinous colorectal cancers and represent targets for investigation of cell death mechanisms in the mucinous subtype.

18.
Cell Death Differ ; 29(4): 806-817, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34754079

RESUMO

Cancer cells' ability to inhibit apoptosis is key to malignant transformation and limits response to therapy. Here, we performed multiplexed immunofluorescence analysis on tissue microarrays with 373 cores from 168 patients, segmentation of 2.4 million individual cells, and quantification of 18 cell lineage and apoptosis proteins. We identified an enrichment for BCL2 in immune, and BAK, SMAC, and XIAP in cancer cells. Ordinary differential equation-based modeling of apoptosis sensitivity at single-cell resolution was conducted and an atlas of inter- and intra-tumor heterogeneity in apoptosis susceptibility generated. Systems modeling at single-cell resolution identified an enhanced sensitivity of cancer cells to mitochondrial permeabilization and executioner caspase activation compared to immune and stromal cells, but showed significant inter- and intra-tumor heterogeneity.


Assuntos
Neoplasias Colorretais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Apoptose/fisiologia , Neoplasias Colorretais/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
19.
Biochim Biophys Acta Mol Cell Res ; 1868(10): 119095, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34214511

RESUMO

BCL2 family proteins are important regulators of mitochondrial outer membrane permeabilization (MOMP). In recent years, BCL2 family proteins have also been linked to the regulation of mitochondrial bioenergetics and dynamics. Given their overexpression in breast cancer cells, we sought to explore whether two key members of this family, BCL2 and BCL(X)L impacted on mitochondrial fusion/fission processes. By employing a single cell imaging and RNA sequencing we found that overexpression of BCL2 or BCL(X)L increases mitochondrial dynamics and alters the expression profile of genes involved in this process. Collectively, our data show that overexpression of BCL2 proteins regulates mitochondrial dynamics in breast cancer tumor cells.


Assuntos
Neoplasias da Mama/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Mitocôndrias/patologia , Dinâmica Mitocondrial , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína bcl-X/genética
20.
Cell Death Differ ; 28(5): 1512-1531, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33328572

RESUMO

The BCL2 family of proteins regulate apoptosis by controlling mitochondrial outer membrane permeability. However, the effects on mitochondrial structure and bioenergetics have also been reported. Here we comprehensively characterized the effects of BCL2 and BCL(X)L on cellular energetics in MCF7 breast cancer cells using time-lapse confocal single-cell imaging and mitochondrial and cytosolic FRET reporters. We found that BCL2 and BCL(X)L increase the metabolic robustness of MCF7 cells, and that this was associated with increased mitochondrial NAD(P)H and ATP levels. Experiments with the F1F0 synthase inhibitor oligomycin demonstrated that BCL2 and in particular BCL(X)L, while not affecting ATP synthase activity, more efficiently coupled the mitochondrial proton motive force with ATP production. This metabolic advantage was associated with an increased resistance to nutrient deprivation and enhanced clonogenic survival in response to metabolic stress, in the absence of profound effects on cell death. Our data suggest that a primary function of BCL(X)L and BCL2 overexpression in tumor cells is to increase their resistance to metabolic stress in the tumor microenvironment, independent of cell death signaling.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Análise de Célula Única/métodos , Proteína bcl-X/metabolismo , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA