Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Tissue Eng Part C Methods ; 30(5): 217-228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38562112

RESUMO

Functional regeneration of anisotropically aligned tissues such as ligaments, microvascular networks, myocardium, or skeletal muscle requires a temporal and spatial series of biochemical and biophysical cues to direct cell functions that promote native tissue regeneration. When these cues are lost during traumatic injuries such as volumetric muscle loss (VML), scar formation occurs, limiting the regenerative capacity of the tissue. Currently, autologous tissue transfer is the gold standard for treating injuries such as VML but can result in adverse outcomes including graft failure, donor site morbidity, and excessive scarring. Tissue-engineered scaffolds composed of biomaterials, cells, or both have been investigated to promote functional tissue regeneration but are still limited by inadequate tissue ingrowth. These scaffolds should provide precisely tuned topographies and stiffnesses using proregenerative materials to encourage tissue-specific functions such as myoblast orientation, followed by aligned myotube formation and recovery of functional contraction. In this study, we describe the design and characterization of novel porous fibrin scaffolds with anisotropic microarchitectural features that recapitulate the native tissue microenvironment and offer a promising approach for regeneration of aligned tissues. We used directional freeze-casting with varied fibrin concentrations and freezing temperatures to produce scaffolds with tunable degrees of anisotropy and strut widths. Nanoindentation analyses showed that the moduli of our fibrin scaffolds varied as a function of fibrin concentration and were consistent with native skeletal muscle tissue. Quantitative morphometric analyses of myoblast cytoskeletons on scaffold microarchitectures demonstrated enhanced cell alignment as a function of microarchitectural morphology. The ability to precisely control the anisotropic features of fibrin scaffolds promises to provide a powerful tool for directing aligned tissue ingrowth and enhance functional regeneration of tissues such as skeletal muscle.


Assuntos
Fibrina , Mioblastos , Alicerces Teciduais , Alicerces Teciduais/química , Fibrina/química , Fibrina/farmacologia , Anisotropia , Mioblastos/citologia , Animais , Porosidade , Engenharia Tecidual/métodos , Camundongos , Linhagem Celular
2.
J Biomed Mater Res A ; 111(9): 1309-1321, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36932841

RESUMO

Cardiovascular disease is the leading cause of death in the United States, which can result in blockage of a coronary artery, triggering a myocardial infarction (MI), scar tissue formation in the myocardium, and ultimately heart failure. Currently, the gold-standard solution for total heart failure is a heart transplantation. An alternative to total-organ transplantation is surgically remodeling the ventricle with the implantation of a cardiac patch. Acellular cardiac patches have previously been investigated using synthetic or decellularized native materials to improve cardiac function. However, a limitation of this strategy is that acellular cardiac patches only reshape the ventricle and do not increase cardiac contractile function. Toward the development of a cardiac patch, our laboratory previously developed a cell-populated composite fibrin scaffold and aligned microthreads to recapitulate the mechanical properties of native myocardium. In this study, we explore micropatterning the surfaces of fibrin gels to mimic anisotropic native tissue architecture and promote cellular alignment of human induced pluripotent stem cell cardiomyocytes (hiPS-CM), which is crucial for increasing scaffold contractile properties. hiPS-CMs seeded on micropatterned surfaces exhibit cellular elongation, distinct sarcomere alignment, and circumferential connexin-43 staining at 14 days of culture, which are necessary for mature contractile properties. Constructs were also subject to electrical stimulation during culture to promote increased contractile properties. After 7 days of stimulation, contractile strains of micropatterned constructs were significantly higher than unpatterned controls. These results suggest that the use of micropatterned topographic cues on fibrin scaffolds may be a promising strategy for creating engineered cardiac tissue.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Engenharia Tecidual/métodos , Fibrina , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio , Insuficiência Cardíaca/metabolismo , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA