Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
CA Cancer J Clin ; 70(5): 349-354, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32662880

RESUMO

New York City has been at the epicenter of the coronavirus disease 2019 (COVID-19) pandemic that has already infected over a million people and resulted in more than 70,000 deaths as of early May 2020 in the United States alone. This rapid and enormous influx of patients into the health care system has had profound effects on all aspects of health care, including the care of patients with cancer. In this report, the authors highlight the transformation they underwent within the Division of Hematology and Medical Oncology as they prepared for the COVID-19 crisis in New York City. Under stressful and uncertain conditions, some of the many changes they enacted within their division included developing a regular line of communication among division leaders to ensure the development and implementation of a restructuring strategy, completely reconfiguring the inpatient and outpatient units, rapidly developing the ability to perform telemedicine video visits, and creating new COVID-rule-out and COVID-positive clinics for their patients. These changes allowed them to manage the storm while minimizing the disruption of important continuity of care to their patients with cancer. The authors hope that their experiences will be helpful to other oncology practices about to experience their own individual COVID-19 crises.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , Neoplasias Hematológicas/complicações , Hematologia/organização & administração , Oncologia/organização & administração , Serviço Hospitalar de Oncologia/organização & administração , COVID-19/complicações , COVID-19/diagnóstico , Comunicação , Neoplasias Hematológicas/terapia , Hematologia/métodos , Humanos , Oncologia/métodos , Cidade de Nova Iorque/epidemiologia , Ambulatório Hospitalar/organização & administração , Isolamento de Pacientes , SARS-CoV-2 , Telemedicina/organização & administração
2.
Proc Natl Acad Sci U S A ; 120(9): e2216421120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802432

RESUMO

Arteriolar smooth muscle cells (SMCs) and capillary pericytes dynamically regulate blood flow in the central nervous system in the face of fluctuating perfusion pressures. Pressure-induced depolarization and Ca2+ elevation provide a mechanism for regulation of SMC contraction, but whether pericytes participate in pressure-induced changes in blood flow remains unknown. Here, utilizing a pressurized whole-retina preparation, we found that increases in intraluminal pressure in the physiological range induce contraction of both dynamically contractile pericytes in the arteriole-proximate transition zone and distal pericytes of the capillary bed. We found that the contractile response to pressure elevation was slower in distal pericytes than in transition zone pericytes and arteriolar SMCs. Pressure-evoked elevation of cytosolic Ca2+ and contractile responses in SMCs were dependent on voltage-dependent Ca2+ channel (VDCC) activity. In contrast, Ca2+ elevation and contractile responses were partially dependent on VDCC activity in transition zone pericytes and independent of VDCC activity in distal pericytes. In both transition zone and distal pericytes, membrane potential at low inlet pressure (20 mmHg) was approximately -40 mV and was depolarized to approximately -30 mV by an increase in pressure to 80 mmHg. The magnitude of whole-cell VDCC currents in freshly isolated pericytes was approximately half that measured in isolated SMCs. Collectively, these results indicate a loss of VDCC involvement in pressure-induced constriction along the arteriole-capillary continuum. They further suggest that alternative mechanisms and kinetics of Ca2+ elevation, contractility, and blood flow regulation exist in central nervous system capillary networks, distinguishing them from neighboring arterioles.


Assuntos
Cálcio , Pericitos , Pericitos/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo L , Arteríolas/fisiologia , Sistema Nervoso Central/metabolismo , Cálcio da Dieta
3.
Biophys J ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444160

RESUMO

Capillaries, composed of electrically coupled endothelial cells and overlying pericytes, constitute the vast majority of blood vessels in the brain. The most arteriole-proximate three to four branches of the capillary bed are covered by α-actin-expressing, contractile pericytes. These mural cells have a distinctive morphology and express different markers compared with their smooth muscle cell (SMC) cousins but share similar excitation-coupling contraction machinery. Despite this similarity, pericytes are considerably more depolarized than SMCs at low intravascular pressures. We have recently shown that pericytes, such as SMCs, possess functional voltage-dependent Ca2+ channels and ATP-sensitive K+ channels. Here, we further investigate the complement of pericyte ion channels, focusing on members of the K+ channel superfamily. Using NG2-DsRed-transgenic mice and diverse configurations of the patch-clamp technique, we demonstrate that pericytes display robust inward-rectifier K+ currents that are primarily mediated by the Kir2 family, based on their unique biophysical characteristics and sensitivity to micromolar concentrations of Ba2+. Moreover, multiple lines of evidence, including characteristic kinetics, sensitivity to specific blockers, biophysical attributes, and distinctive single-channel properties, established the functional expression of two voltage-dependent K+ channels: KV1 and BKCa. Although these three types of channels are also present in SMCs, they exhibit distinctive current density and kinetics profiles in pericytes. Collectively, these findings underscore differences in the operation of shared molecular features between pericytes and SMCs and highlight the potential contribution of these three K+ ion channels in setting pericyte membrane potential, modulating capillary hemodynamics, and regulating cerebral blood flow.

4.
Am J Respir Cell Mol Biol ; 71(1): 95-109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546978

RESUMO

Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.


Assuntos
Dasatinibe , Células Endoteliais , Canais de Potássio de Domínios Poros em Tandem , Dasatinibe/farmacologia , Dasatinibe/efeitos adversos , Humanos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Movimento Celular/efeitos dos fármacos , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Masculino , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Proteínas do Tecido Nervoso
5.
Ann Rheum Dis ; 82(10): 1258-1270, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640450

RESUMO

OBJECTIVE: To develop new antiphospholipid syndrome (APS) classification criteria with high specificity for use in observational studies and trials, jointly supported by the American College of Rheumatology (ACR) and EULAR. METHODS: This international multidisciplinary initiative included four phases: (1) Phase I, criteria generation by surveys and literature review; (2) Phase II, criteria reduction by modified Delphi and nominal group technique exercises; (3) Phase III, criteria definition, further reduction with the guidance of real-world patient scenarios, and weighting via consensus-based multicriteria decision analysis, and threshold identification; and (4) Phase IV, validation using independent adjudicators' consensus as the gold standard. RESULTS: The 2023 ACR/EULAR APS classification criteria include an entry criterion of at least one positive antiphospholipid antibody (aPL) test within 3 years of identification of an aPL-associated clinical criterion, followed by additive weighted criteria (score range 1-7 points each) clustered into six clinical domains (macrovascular venous thromboembolism, macrovascular arterial thrombosis, microvascular, obstetric, cardiac valve, and hematologic) and two laboratory domains (lupus anticoagulant functional coagulation assays, and solid-phase enzyme-linked immunosorbent assays for IgG/IgM anticardiolipin and/or IgG/IgM anti-ß2-glycoprotein I antibodies). Patients accumulating at least three points each from the clinical and laboratory domains are classified as having APS. In the validation cohort, the new APS criteria vs the 2006 revised Sapporo classification criteria had a specificity of 99% vs 86%, and a sensitivity of 84% vs 99%. CONCLUSION: These new ACR/EULAR APS classification criteria were developed using rigorous methodology with multidisciplinary international input. Hierarchically clustered, weighted, and risk-stratified criteria reflect the current thinking about APS, providing high specificity and a strong foundation for future APS research.


Assuntos
Síndrome Antifosfolipídica , Reumatologia , Feminino , Gravidez , Humanos , Síndrome Antifosfolipídica/diagnóstico , Autoanticorpos , Imunoglobulina G , Imunoglobulina M
6.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569725

RESUMO

Recent evidence suggests that vitamin D is involved in the development of pulmonary arterial hypertension (PAH). The aim of this study was to analyze the electrophysiological and contractile properties of pulmonary arteries (PAs) in vitamin D receptor knockout mice (Vdr-/-). PAs were dissected and mounted in a wire myograph. Potassium membrane currents were recorded in freshly isolated PA smooth muscle cells (PASMCs) using the conventional whole-cell configuration of the patch-clamp technique. Potential vitamin D response elements (VDREs) in Kv7 channels coding genes were studied, and their protein expression was analyzed. Vdr-/- mice did not show a pulmonary hypertensive phenotype, as neither right ventricular hypertrophy nor endothelial dysfunction was apparent. However, resistance PA from these mice exhibited increased response to retigabine, a Kv7 activator, compared to controls and heterozygous mice. Furthermore, the current sensitive to XE991, a Kv7 inhibitor, was also higher in PASMCs from knockout mice. A possible VDRE was found in the gene coding for KCNE4, the regulatory subunit of Kv7.4. Accordingly, Vdr-/- mice showed an increased expression of KCNE4 in the lungs, with no changes in Kv7.1 and Kv7.4. These results indicate that the absence of Vdr in mice, as occurred with vitamin D deficient rats, is not sufficient to induce PAH. However, the contribution of Kv7 channel currents to the regulation of PA tone is increased in Vdr-/- mice, resembling animals and humans suffering from PAH.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Artéria Pulmonar , Animais , Humanos , Camundongos , Ratos , Canais de Potássio KCNQ/metabolismo , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Artéria Pulmonar/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Vitamina D/metabolismo
7.
Annu Rev Pharmacol Toxicol ; 58: 391-410, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28968190

RESUMO

Arterial tone is coordinated among vessel segments to optimize nutrient transport and organ function. Coordinated vasomotor activity is remarkable to observe and depends on stimuli, sparsely generated in tissue, eliciting electrical responses that conduct lengthwise among electrically coupled vascular cells. The conducted response is the focus of this topical review, and in this regard, the authors highlight literature that advances an appreciation of functional significance, cellular mechanisms, and biophysical principles. Of particular note, this review stresses that conduction is enabled by a defined pattern of charge movement along the arterial wall as set by three key parameters (tissue structure, gap junctional resistivity, and ion channel activity). The impact of disease on conduction is carefully discussed, as are potential strategies to restore this key biological response and, along with it, the match of blood flow delivery with tissue energetic demand.


Assuntos
Endotélio Vascular/fisiologia , Músculo Liso Vascular/fisiologia , Sistema Vasomotor/fisiologia , Animais , Humanos , Transdução de Sinais/fisiologia
8.
Am J Nephrol ; 52(9): 714-724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34518454

RESUMO

INTRODUCTION: Acute kidney injury (AKI) is a threatening, multiaetiological syndrome encompassing a variety of forms and damage patterns. AKI lacks sufficiently specific diagnostic tools to evaluate the distinct combination of pathophysiological events underlying each case, which limits personalized and optimized handling. Therefore, a pathophysiological diagnosis based on new urinary biomarkers is sought for practical (readiness and noninvasiveness) and conceptual reasons, as the urine is a direct product of the kidneys. However, biomarkers found in the urine may also have extrarenal origin, thus conveying pathophysiological information from other organs or tissues. Urinary plasminogen activator inhibitor-1 (PAI-1) has been associated to AKI, although its origin and traffic to the urine are not known. METHODS: Herein, we studied the blood or renal origin of urinary PAI-1 (uPAI-1) in experimental AKI in Wistar rats, by means of the in situ renal perfusion method. For this purpose, urine was collected while the kidneys of rats with AKI showing increased uPAI-1 excretion, and controls, were in situ perfused with a saline solution. RESULTS: Our results show that during perfusion, PAI-1 remained in the urine of AKI rats, suggesting that renal cells shed this protein directly to the urine. PAI-1 is also significantly increased in the urine of AKI patients. Its low correlation with other urinary markers such as NGAL or NAG suggests that PAI-1 provides complementary and distinct phenotypical information. CONCLUSION: In conclusion, uPAI-1 is a biomarker produced by damaged kidneys following AKI, whose precise pathophysiological meaning in AKI needs to be further investigated.


Assuntos
Injúria Renal Aguda/urina , Túbulos Renais , Inibidor 1 de Ativador de Plasminogênio/urina , Adulto , Idoso , Animais , Biomarcadores/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Wistar
9.
Arterioscler Thromb Vasc Biol ; 40(3): 733-750, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31826653

RESUMO

OBJECTIVE: Cerebral arterial networks match blood flow delivery with neural activity. Neurovascular response begins with a stimulus and a focal change in vessel diameter, which by themselves is inconsequential to blood flow magnitude, until they spread and alter the contractile status of neighboring arterial segments. We sought to define the mechanisms underlying integrated vascular behavior and considered the role of intercellular electrical signaling in this phenomenon. Approach and Results: Electron microscopic and histochemical analysis revealed the structural coupling of cerebrovascular cells and the expression of gap junctional subunits at the cell interfaces, enabling intercellular signaling among vascular cells. Indeed, robust vasomotor conduction was detected in human and mice cerebral arteries after focal vessel stimulation: a response attributed to endothelial gap junctional communication, as its genetic alteration attenuated this behavior. Conducted responses were observed to ascend from the penetrating arterioles, influencing the contractile status of cortical surface vessels, in a simulated model of cerebral arterial network. Ascending responses recognized in vivo after whisker stimulation were significantly attenuated in mice with altered endothelial gap junctional signaling confirming that gap junctional communication drives integrated vessel responses. The diminishment in vascular communication also impaired the critical ability of the cerebral vasculature to maintain blood flow homeostasis and hence tissue viability after stroke. CONCLUSIONS: Our findings highlight the integral role of intercellular electrical signaling in transcribing focal stimuli into coordinated changes in cerebrovascular contractile activity and expose, a hitherto unknown mechanism for flow regulation after stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Comunicação Celular , Circulação Cerebrovascular , Células Endoteliais , Junções Comunicantes , Artéria Cerebral Média/inervação , Acoplamento Neurovascular , Acidente Vascular Cerebral/fisiopatologia , Adulto , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Simulação por Computador , Conexinas/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Condutividade Elétrica , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Feminino , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Homeostase , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/ultraestrutura , Modelos Cardiovasculares , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Proteína alfa-5 de Junções Comunicantes
10.
Am J Physiol Heart Circ Physiol ; 318(3): H632-H638, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004067

RESUMO

Arterial membrane potential (Vm) is set by an active interplay among ion channels whose principal function is to set contractility through the gating of voltage-operated Ca2+ channels. To garner an understanding of this electrical parameter, the activity of each channel must be established under near-physiological conditions, a significant challenge given their small magnitude. The inward rectifying K+ (KIR) channel is illustrative of the problem, as its outward "physiological" component is almost undetectable. This study describes a stepwise approach to dissect small ionic currents at physiological Vm using endothelial and smooth muscle cells freshly isolated from rat cerebral arteries. We highlight three critical steps, beginning with the voltage clamping of vascular cells bathed in physiological solutions while maintaining a giga-ohm seal. KIR channels are then inhibited (micromolar Ba2+) so that a difference current can be created, once Ba2+ traces are corrected for the changing seal resistance and subtle instrument drift, pulling the reversal potential rightward. The latter is a new procedure and entails the alignment of whole cell current traces at a voltage where KIR is silent and other channels exhibit limited activity. We subsequently introduced corrected and uncorrected currents into computer models of the arterial wall to show how these subtle adjustments markedly impact the importance of KIR in Vm and arterial tone regulation. We argue that this refined approach can be used on an array of vascular ion channels to build a complete picture of how they dynamically interact to set arterial tone in key organs like the brain.NEW & NOTEWORTHY This work describes a stepwise approach to resolve small ionic currents involved in controlling Vm in resistance arteries. Using this new methodology, we particularly resolved the outward component of the KIR current in native vascular cells, voltage clamped in near-physiological conditions. This novel approach can be applied to any other vascular currents and used to better interpret how vascular ion channels cooperate to control arterial tone.


Assuntos
Artérias Cerebrais/fisiologia , Potenciais da Membrana/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Animais , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Ratos , Ratos Sprague-Dawley
11.
Breast Cancer Res Treat ; 184(2): 469-479, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32876911

RESUMO

PURPOSE: Neoadjuvant clinical trials with dual HER2 blockade with pertuzumab and trastuzumab plus chemotherapy demonstrated high rates of pathological complete response (pCR) in HER2-positive early breast cancer (BC). We investigated whether the benefit on pCR seen in clinical trials is confirmed in a real-world setting. METHODS: Multicenter, retrospective study in patients with HER2-positive early BC receiving neoadjuvant treatment with pertuzumab and trastuzumab in routine clinical practice (n = 243). The primary endpoint was total pCR (tpCR) (ypT0/is ypN0). RESULTS: A total of 243 evaluable patients were included. Pertuzumab and trastuzumab were combined with anthracyclines and taxanes in 74.1% of patients, with single-agent taxane in 11.1% of patients and with platinum-based chemotherapy (CT) in 14.4% of patients. The tpCR rate was 66.4%:71% with anthracyclines and taxanes, 59.3% with single-agent taxane, and 48.6% with platinum-based combinations. The tpCR rate was higher among patients with hormone receptor (HR)-negative tumors (80.9%) vs HR-positive tumors (55.4%) (p < 0.001). A pCR in the breast (ypT0/is) was achieved in 67.6% of patients. Of 143 patients who showed radiological complete response (rCR) (62%), 112 (78.3%) patients also achieved tpCR. Assessment of rCR by magnetic resonance imaging (MRI) showed the highest negative predictive value (NPV) for predicting tpCR (83.5%). Breast-conserving surgery was performed in 58.7% of patients. Grade 3 and grade 4 toxicities were reported in 33 (18.2%) and 12 (6.6%) patients, respectively. No toxicity leading to death was reported. CONCLUSIONS: This real-world analysis shows that neoadjuvant pertuzumab, trastuzumab, and chemotherapy achieve comparable or even higher rates of tpCR than those seen in clinical trials. The pCR benefit is higher in HR-negative tumors. The assessment of rCR by MRI showed the highest ability for predicting pCR. In addition, this neoadjuvant strategy confers an acceptable safety profile.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino , Humanos , Receptor ErbB-2/genética , Estudos Retrospectivos , Trastuzumab/efeitos adversos
12.
Arterioscler Thromb Vasc Biol ; 39(6): 1072-1087, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31043073

RESUMO

Objective- Inward rectifying K+ (KIR) channels are present in cerebral arterial smooth muscle and endothelial cells, a tandem arrangement suggestive of a dynamic yet undiscovered role for this channel. This study defined whether distinct pools of cerebral arterial KIR channels were uniquely modulated by membrane lipids and hemodynamic stimuli. Approach and Results- A Ba2+-sensitive KIR current was isolated in smooth muscle and endothelial cells of rat cerebral arteries; molecular analyses subsequently confirmed KIR2.1/KIR2.2 mRNA and protein expression in both cells. Patch-clamp electrophysiology next demonstrated that each population of KIR channels was sensitive to key membrane lipids and hemodynamic stimuli. In this regard, endothelial KIR was sensitive to phosphatidylinositol 4,5-bisphosphate content, with depletion impairing the ability of laminar shear stress to activate this channel pool. In contrast, smooth muscle KIR was sensitive to membrane cholesterol content, with sequestration blocking the ability of pressure to inhibit channel activity. The idea that membrane lipids help confer shear stress and pressure sensitivity of KIR channels was confirmed in intact arteries using myography. Virtual models integrating structural/electrical observations reconceptualized KIR as a dynamic regulator of membrane potential working in concert with other currents to set basal tone across a range of shear stresses and intravascular pressures. Conclusions- The data show for the first time that specific membrane lipid-KIR interactions enable unique channel populations to sense hemodynamic stimuli and drive vasomotor responses to set basal perfusion in the cerebral circulation.


Assuntos
Artérias Cerebrais/metabolismo , Circulação Cerebrovascular/fisiologia , Células Endoteliais/metabolismo , Lipídeos de Membrana/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/genética , Animais , Comunicação Celular/fisiologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Hemodinâmica/fisiologia , Potenciais da Membrana , Modelos Animais , Ratos , Ratos Sprague-Dawley , Valores de Referência
13.
J Thromb Thrombolysis ; 49(1): 153-158, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31456167

RESUMO

Primary brain tumors, both benign and malignant, pose a high risk of perioperative venous thromboembolism (VTE) due to the development of a prothrombotic state. Perioperative pharmacologic thromboprophylaxis with subcutaneous (SC) unfractionated heparin (UFH) has significantly reduced VTE associated morbidity. Recent reports suggest an association between prolonged activated partial thromboplastin time (aPTT) due to prophylactic SC UFH and increased bleeding risk. We present three patients with normal baseline coagulation parameters in whom pharmacologic thromboprophylaxis with SC UFH resulted in a marked prolongation of the aPTT, leading to adverse outcomes in two patients. These cases demonstrate the uncertain kinetics of SC UFH and effect on aPTT, suggesting the significance of routine aPTT monitoring in high-risk settings. Given the wide variation in presentations of therapeutic or supratherapeutic values of aPTT in the perioperative neurosurgical setting, we propose a practical standardized approach to the evaluation and management of aPTT prolongation following prophylactic SC UFH administration.


Assuntos
Anticoagulantes/administração & dosagem , Neoplasias Encefálicas , Heparina/administração & dosagem , Procedimentos Neurocirúrgicos/efeitos adversos , Complicações Pós-Operatórias , Trombose Venosa , Idoso , Idoso de 80 Anos ou mais , Anticoagulantes/efeitos adversos , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/cirurgia , Feminino , Heparina/efeitos adversos , Humanos , Tempo de Tromboplastina Parcial , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/prevenção & controle , Trombose Venosa/sangue , Trombose Venosa/etiologia , Trombose Venosa/prevenção & controle
14.
Curr Top Membr ; 85: 227-259, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32402641

RESUMO

Basal tone and perfusion control is set in cerebral arteries by the sensing of pressure and flow, key hemodynamic stimuli. These forces establish a contractile foundation within arterial networks upon which local neurovascular stimuli operate. This fundamental process is intimately tied to arterial VM and the rise in cytosolic [Ca2+] by the graded opening of voltage-operated Ca2+ channels. Arterial VM is in turn controlled by a dynamic interaction among several resident ion channels, KIR being one of particular significance. As the name suggests, KIR displays strong inward rectification, retains a small outward component, potentiated by extracellular K+ and blocked by micromolar Ba2+. Cerebrovascular KIR is unique from other K+ currents as it is present in both smooth muscle and endothelium yet lacking in classical regulatory modulation. Such observations have fostered the view that KIR is nothing more than a background conductance, activated by extracellular K+ and which passively facilitates dilation. Recent work in cell model systems has; however, identified two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, that interact with KIR2.x, to stabilize the channel in the preferred open or silent state, respectively. Translating this unique form of regulation, recent studies have demonstrated that specific lipid-protein interactions enable unique KIR populations to sense distinct hemodynamic stimuli and set basal tone. This review summarizes the current knowledge of vascular KIR channels and how the lipid and hemodynamic impact their activity.


Assuntos
Hemodinâmica , Metabolismo dos Lipídeos , Microvasos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Doença , Humanos , Microvasos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/química
15.
BMC Med Educ ; 20(1): 47, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046696

RESUMO

BACKGROUND: Resistance to antimicrobial agents has become a problem in modern society. Antibiotic resistant bacteria undermine the prevention and treatment of infections. Undergraduate dental students in Europe are required to receive information in aspects of microbiology relevant for dental practice, including oral microbial pathogens and resistance mechanisms against antimicrobial compounds. The objective of this study was to implement a research-based strategy to aid the understanding of the increase in antimicrobial resistance in undergraduate dental student training. The primary outcome of this project is the efficacious delivery of the learning objectives. METHODS: Ten volunteer undergraduate student "ambassadors" were recruited to manage the project with assistance from lead academics. Student ambassadors were a source of peer learning for their colleagues. The project consisted of three phases: Pre-project preparation (in which the ambassadors received special instruction and training); Practical experience (in which the ambassadors worked with volunteer student colleagues to carry out the project); Public presentation of results (in which ambassadors presented study results at a scientific conference of their choosing). RESULTS: A total of 1164 students volunteered for the project, corresponding to an average participation rate of 76.4% students per year of the course. Following final debriefing, student participants and ambassadors were strongly positive in their evaluation of the achievement of 8 key student learning objectives. The results demonstrate that most volunteers improved their knowledge related to antimicrobial resistance mechanisms in microbiology. Additional benefits of participation in this project included an improvement in dental knowledge and ethics in biomedical research for the student volunteers, whilst the student ambassadors reported improved knowledge about critical thinking and study design, as well as a deeper understanding about microbiological analysis methods. CONCLUSIONS: To the best of our knowledge, this the first instance of the application of project-based methodologies to the teaching of a traditionally non-laboratory component of a subject taught in the dentistry curriculum. Results from both students and ambassadors highlighted the increase in dental knowledge and an increased awareness of antimicrobial resistance as the key outcomes of this project.


Assuntos
Competência Clínica , Currículo , Resistência Microbiana a Medicamentos , Educação em Odontologia , Microbiologia/educação , Estudos Transversais , Humanos , Projetos de Pesquisa
16.
Hum Factors ; 62(3): 351-364, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31928418

RESUMO

OBJECTIVE: To explore user-centered design methods currently implemented during development of lower limb wearable robots and how they are utilized during different stages of product development. BACKGROUND: Currently, there appears to be a lack of standardized frameworks for evaluation methods and design requirements to implement effective user-centered design for safe and effective clinical or ergonomic system application. METHOD: Responses from a total of 191 experts working in the field of lower limb exoskeletons were analyzed in this exploratory survey. Descriptive statistics were used to present responses and measures of frequency, and chi-square tests were used to contrast the answers of respondents who identified as clinicians versus engineers. RESULTS: A vast majority of respondents involve users in their development, in particular at the initial and iterative stages, although some differences were found between disciplines. A variety of methods and metrics are used to capture feedback from users and test devices, and although valuable, some methods used may not be based on validated measures. Guidelines regarding tests on safety of exoskeletons also lack standardization. CONCLUSION: There seems to be a consensus among experts regarding the importance of a user-centered approach in exoskeleton development; however, standardized frameworks with regard to appropriate testing methods and design approaches are lacking. Such frameworks should consider an interdisciplinary focus on the needs and safety of the intended user during each iteration of the process. APPLICATION: This exploratory study provides an overview of current practice among engineers and clinicians regarding the user-centered design of exoskeletons. Limitations and recommendations for future directions are identified.


Assuntos
Exoesqueleto Energizado , Extremidade Inferior/fisiologia , Robótica , Participação dos Interessados , Design Centrado no Usuário , Humanos , Dispositivos Eletrônicos Vestíveis
17.
Am J Physiol Heart Circ Physiol ; 316(4): H794-H800, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30681365

RESUMO

In the rodent cerebral circulation, inward rectifying K+ (KIR) channels set resting tone and the distance over which electrical phenomena spread along the arterial wall. The present study sought to translate these observations into human cerebral arteries obtained from resected brain tissue. Computational modeling and a conduction assay first defined the impact of KIR channels on electrical communication; patch-clamp electrophysiology, quantitative PCR, and immunohistochemistry then characterized KIR2.x channel expression/activity. In keeping with rodent observations, computer modeling highlighted that KIR blockade should constrict cerebral arteries and attenuate electrical communication if functionally expressed. Surprisingly, Ba2+ (a KIR channel inhibitor) had no effect on human cerebral arterial tone or intercellular conduction. In alignment with these observations, immunohistochemistry and patch-clamp electrophysiology revealed minimal KIR channel expression/activity in both smooth muscle and endothelial cells. This absence may be reflective of chronic stress as dysphormic neurons, leukocyte infiltrate, and glial fibrillary acidic protein expression was notable in the epileptic cortex. In closing, KIR2.x channel expression is limited in human cerebral arteries from patients with epilepsy and thus has little impact on resting tone or the spread of vasomotor responses. NEW & NOTEWORTHY KIR2.x channels are expressed in rodent cerebral arterial smooth muscle and endothelial cells. As they are critical to setting membrane potential and the distance signals conduct, we sought to translate this work into humans. Surprisingly, KIR2.x channel activity/expression was limited in human cerebral arteries, a paucity tied to chronic brain stress in the epileptic cortex. Without substantive expression, KIR2.x channels were unable to govern arterial tone or conduction.


Assuntos
Artérias Cerebrais/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Adulto , Bário/farmacologia , Comunicação Celular , Artérias Cerebrais/efeitos dos fármacos , Simulação por Computador , Fenômenos Eletrofisiológicos/fisiologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Epilepsia/fisiopatologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Tono Muscular/efeitos dos fármacos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Adulto Jovem
18.
Future Oncol ; 14(7s): 13-20, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29611754

RESUMO

Triple-negative breast cancers are defined as tumors negative for estrogen receptors, progesterone receptors and human EGFR2. These tumors exhibit diverse biological behavior and have a poor prognosis; chemotherapy is the mainstay of treatment. The first case involves a young woman with cerebral and cerebellar metastases who achieved a persistent objective response to fourth-line eribulin. In the second case, a woman who became metastatic during adjuvant therapy with anthracyclines and taxanes, and was refractory to capecitabine + bevacizumab, achieved a partial response and local symptom improvement with eribulin + bevacizumab. Last, a poly-treated patient demonstrated reasonable response and longer progression-free interval on third-line eribulin relative to previous lines of chemotherapy which is unusual in this clinical setting.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal de Mama/tratamento farmacológico , Furanos/uso terapêutico , Cetonas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Adulto , Idoso , Feminino , Humanos
19.
Microcirculation ; 24(3)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27809400

RESUMO

OBJECTIVE: Endothelial and smooth muscle cells must communicate with one another to regulate arterial diameter. A key structure driving heterocellular communication is the endothelial projection, a thin extension that crosses the internal elastic lamina (IEL) making contact with smooth muscle. This study sought to define the precise structural composition of endothelial projections in the mesenteric circulation. METHODS: Third- and fourth-order mesenteric arteries from hamster were prepared for electron microscopy. Electron tomographic approaches were used to generate 3-D compositional models of endothelial projections. RESULTS: Endothelial projections were categorized based upon their proximity to smooth muscle or how many projections projected through an IEL hole. Irrespective of the initial categorization, endothelial projections were largely devoid of organelles except for sparse membranous structures observed near the tip, close to potential smooth muscle contact sites. Unexpectedly, it was the base of projections which were rich with organelles including the endoplasmic reticulum, ribosomes, vesicles, caveolae, and mitochondria. CONCLUSIONS: Electron tomographic techniques suggest that the base of endothelial projections is likely a dynamic site for signal regulation and contractile control. As projections are largely devoid of membranous organelles, their principal function appears to ensure electrical contact between the two cell layers.


Assuntos
Comunicação Celular/fisiologia , Tomografia com Microscopia Eletrônica/métodos , Células Endoteliais/citologia , Artérias Mesentéricas/ultraestrutura , Miócitos de Músculo Liso/citologia , Animais , Cricetinae , Células Endoteliais/ultraestrutura , Endotélio Vascular/citologia , Endotélio Vascular/diagnóstico por imagem , Endotélio Vascular/ultraestrutura , Imageamento Tridimensional , Artérias Mesentéricas/fisiologia , Organelas/ultraestrutura
20.
Artigo em Inglês | MEDLINE | ID: mdl-28508439

RESUMO

BACKGROUND: Information regarding suitability for subcutaneous defibrillator (sICD) implantation in tetralogy of Fallot (ToF) and systemic right ventricle is scarce and needs to be further explored. The main objective of our study was to determine the proportion of patients with ToF and systemic right ventricle eligible for sICD with both, standard and right-sided screening methods. Secondary objectives were: (i) to study sICD eligibility specifically in patients at high risk of sudden cardiac death, (ii) to identify independent predictors for sICD eligibility, and (iii) to compare the proportion of eligible patients in a nonselected ICD population. METHODS: We recruited 102 patients with ToF, 33 with systemic right ventricle, and 40 consecutive nonselected patients. Conventional electrocardiographic screening was performed as usual. Right-sided alternative screening was studied by positioning the left-arm and right-arm electrodes 1 cm right lateral of the xiphoid midline. The Boston Scientific ECG screening tool was utilized. RESULTS: In high-risk patients with ToF, eligibility was higher with right-sided screening in comparison with standard screening (61% vs. 44%; p = .018). Eligibility in high-risk right ventricle population was identical with both screening methods (77%, p = ns). The only independent predictor for sICD eligibility was QRS duration. CONCLUSION: In high-risk patients with ToF, right-sided implantation of the sICD could be an alternative to a conventional ICD. In patients with a systemic right ventricle, implantation of a sICD is an alternative to a conventional sICD.


Assuntos
Morte Súbita Cardíaca/prevenção & controle , Desfibriladores Implantáveis , Eletrocardiografia/métodos , Seleção de Pacientes , Tetralogia de Fallot/fisiopatologia , Disfunção Ventricular Direita/fisiopatologia , Adulto , Eletrocardiografia/estatística & dados numéricos , Feminino , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Tetralogia de Fallot/terapia , Disfunção Ventricular Direita/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA