Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(5): 571-585, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33903764

RESUMO

Fibroblastic reticular cells (FRCs) are specialized stromal cells that define tissue architecture and regulate lymphocyte compartmentalization, homeostasis, and innate and adaptive immunity in secondary lymphoid organs (SLOs). In the present study, we used single-cell RNA sequencing (scRNA-seq) of human and mouse lymph nodes (LNs) to identify a subset of T cell-zone FRCs defined by the expression of Gremlin1 (Grem1) in both species. Grem1-CreERT2 knock-in mice enabled localization, multi-omics characterization and genetic depletion of Grem1+ FRCs. Grem1+ FRCs primarily localize at T-B cell junctions of SLOs, neighboring pre-dendritic cells and conventional dendritic cells (cDCs). As such, their depletion resulted in preferential loss and decreased homeostatic proliferation and survival of resident cDCs and compromised T cell immunity. Trajectory analysis of human LN scRNA-seq data revealed expression similarities to murine FRCs, with GREM1+ cells marking the endpoint of both trajectories. These findings illuminate a new Grem1+ fibroblastic niche in LNs that functions to maintain the homeostasis of lymphoid tissue-resident cDCs.


Assuntos
Células Dendríticas Foliculares/imunologia , Fibroblastos/imunologia , Linfonodos/imunologia , Células Estromais/imunologia , Idoso , Animais , Apoptose/genética , Apoptose/imunologia , Proliferação de Células/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Células Dendríticas Foliculares/metabolismo , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica/imunologia , Técnicas de Introdução de Genes , Humanos , Imunidade Celular/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Linfonodos/citologia , Masculino , Camundongos , Camundongos Transgênicos , RNA-Seq , Análise de Célula Única , Células Estromais/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Nat Immunol ; 20(3): 257-264, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778250

RESUMO

Post-translational modification of chemokines mediated by the dipeptidyl peptidase DPP4 (CD26) has been shown to negatively regulate lymphocyte trafficking, and its inhibition enhances T cell migration and tumor immunity by preserving functional chemokine CXCL10. By extending those initial findings to pre-clinical models of hepatocellular carcinoma and breast cancer, we discovered a distinct mechanism by which inhibition of DPP4 improves anti-tumor responses. Administration of the DPP4 inhibitor sitagliptin resulted in higher concentrations of the chemokine CCL11 and increased migration of eosinophils into solid tumors. Enhanced tumor control was preserved in mice lacking lymphocytes and was ablated after depletion of eosinophils or treatment with degranulation inhibitors. We further demonstrated that tumor-cell expression of the alarmin IL-33 was necessary and sufficient for eosinophil-mediated anti-tumor responses and that this mechanism contributed to the efficacy of checkpoint-inhibitor therapy. These findings provide insight into IL-33- and eosinophil-mediated tumor control, revealed when endogenous mechanisms of DPP4 immunoregulation are inhibited.


Assuntos
Dipeptidil Peptidase 4/imunologia , Eosinófilos/imunologia , Interleucina-33/imunologia , Neoplasias Experimentais/imunologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Quimiocina CCL11/imunologia , Quimiocina CCL11/metabolismo , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Humanos , Interleucina-33/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/prevenção & controle , Fosfato de Sitagliptina/farmacologia
3.
Immunity ; 51(1): 119-130.e5, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31231034

RESUMO

Tissue-resident macrophages require specific milieus for the maintenance of defining gene-expression programs. Expression of the transcription factor GATA6 is required for the homeostasis, function and localization of peritoneal cavity-resident macrophages. Gata6 expression is maintained in a non-cell autonomous manner and is elicited by the vitamin A metabolite, retinoic acid. Here, we found that the GATA6 transcriptional program is a common feature of macrophages residing in all visceral body cavities. Retinoic acid-dependent and -independent hallmark genes of GATA6+ macrophages were induced by mesothelial and fibroblastic stromal cells that express the transcription factor Wilms' Tumor 1 (WT1), which drives the expression of two rate-limiting enzymes in retinol metabolism. Depletion of Wt1+ stromal cells reduced the frequency of GATA6+ macrophages in the peritoneal, pleural and pericardial cavities. Thus, Wt1+ mesothelial and fibroblastic stromal cells constitute essential niche components supporting the tissue-specifying transcriptional landscape and homeostasis of cavity-resident macrophages.


Assuntos
Fator de Transcrição GATA6/metabolismo , Macrófagos/fisiologia , Pericárdio/imunologia , Cavidade Peritoneal/fisiologia , Cavidade Pleural/imunologia , Proteínas Repressoras/metabolismo , Células Estromais/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Fator de Transcrição GATA6/genética , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Repressoras/genética , Tretinoína/metabolismo , Proteínas WT1
4.
Nat Methods ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744918

RESUMO

The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.

5.
Nature ; 591(7848): 131-136, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472215

RESUMO

Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules known as damage-associated molecular patterns (DAMPs) that propagate the inflammatory response1-3. The underlying mechanism of PMR, however, is unknown. Here we show that the cell-surface NINJ1 protein4-8, which contains two transmembrane regions, has an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1-/- macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and were unable to release numerous intracellular proteins including HMGB1 (a known DAMP) and LDH (a standard measure of PMR). Ninj1-/- macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1-/- mice were more susceptible than wild-type mice to infection with Citrobacter rodentium, which suggests a role for PMR in anti-bacterial host defence. Mechanistically, NINJ1 used an evolutionarily conserved extracellular domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held idea that cell death-related PMR is a passive event.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Morte Celular , Membrana Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Apoptose , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Morte Celular/genética , Feminino , Humanos , Macrófagos , Masculino , Camundongos , Mutação , Necrose , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Multimerização Proteica , Piroptose/genética
6.
EMBO J ; 41(14): e110155, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35611591

RESUMO

Mitogen-activated protein kinases (MAPKs) drive key signaling cascades during neuronal survival and degeneration. The localization of kinases to specific subcellular compartments is a critical mechanism to locally control signaling activity and specificity upon stimulation. However, how MAPK signaling components tightly control their localization remains largely unknown. Here, we systematically analyzed the phosphorylation and membrane localization of all MAPKs expressed in dorsal root ganglia (DRG) neurons, under control and stress conditions. We found that MAP3K12/dual leucine zipper kinase (DLK) becomes phosphorylated and palmitoylated, and it is recruited to sphingomyelin-rich vesicles upon stress. Stress-induced DLK vesicle recruitment is essential for kinase activation; blocking DLK-membrane interaction inhibits downstream signaling, while DLK recruitment to ectopic subcellular structures is sufficient to induce kinase activation. We show that the localization of DLK to newly formed vesicles is essential for local signaling. Inhibition of membrane internalization blocks DLK activation and protects against neurodegeneration in DRG neurons. These data establish vesicular assemblies as dynamically regulated platforms for DLK signaling during neuronal stress responses.


Assuntos
Zíper de Leucina , MAP Quinase Quinase Quinases , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais
7.
Cell ; 145(4): 513-28, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565611

RESUMO

Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins and discovered three connected modules: "NPHP1-4-8" functioning at the apical surface, "NPHP5-6" at centrosomes, and "MKS" linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes, and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.


Assuntos
Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Transdução de Sinais , Animais , Ataxina-10 , Centrossomo/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Proteínas Hedgehog/metabolismo , Humanos , Doenças Renais Císticas/metabolismo , Camundongos , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Doenças Renais Policísticas/genética , Retinose Pigmentar , Peixe-Zebra
8.
Nature ; 584(7821): 479-483, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788728

RESUMO

Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.


Assuntos
Membrana Celular/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/patogenicidade , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Amidoidrolases/química , Amidoidrolases/metabolismo , Motivos de Aminoácidos , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Estabilidade Enzimática , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Genes Essenciais , Hidrolases/química , Hidrolases/metabolismo , Lipídeo A/química , Lipídeo A/metabolismo , Lipopolissacarídeos/biossíntese , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Periplasma/química , Periplasma/metabolismo , Ligação Proteica , Virulência
9.
Mol Cell ; 71(4): 629-636.e5, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30118681

RESUMO

The kinases PERK and IRE1 alleviate endoplasmic reticulum (ER) stress by orchestrating the unfolded protein response (UPR). If stress mitigation fails, PERK promotes cell death by activating pro-apoptotic genes, including death receptor 5 (DR5). Conversely, IRE1-which harbors both kinase and endoribonuclease (RNase) modules-blocks apoptosis through regulated IRE1-dependent decay (RIDD) of DR5 mRNA. Under irresolvable ER stress, PERK activity persists, whereas IRE1 paradoxically attenuates, by mechanisms that remain obscure. Here, we report that PERK governs IRE1's attenuation through a phosphatase known as RPAP2 (RNA polymerase II-associated protein 2). RPAP2 reverses IRE1 phosphorylation, oligomerization, and RNase activation. This inhibits IRE1-mediated adaptive events, including activation of the cytoprotective transcription factor XBP1s, and ER-associated degradation of unfolded proteins. Furthermore, RIDD termination by RPAP2 unleashes DR5-mediated caspase activation and drives cell death. Thus, PERK attenuates IRE1 via RPAP2 to abort failed ER-stress adaptation and trigger apoptosis.


Assuntos
Apoptose/genética , Proteínas de Transporte/genética , Endorribonucleases/genética , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética , Proteínas de Transporte/metabolismo , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , eIF-2 Quinase/metabolismo
10.
J Neurosci ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830764

RESUMO

Human genetics and preclinical studies have identified key contributions of TREM2 to several neurodegenerative conditions, inspiring efforts to modulate TREM2 therapeutically. Here, we characterize the activities of three TREM2 agonist antibodies in multiple mixed-sex mouse models of Alzheimer's Disease (AD) pathology and remyelination. Receptor activation and downstream signaling are explored in vitro, and active dose ranges are determined in vivo based on pharmacodynamic responses from microglia. For mice bearing amyloid-ß (Aß) pathology (PS2APP) or combined Aß and tau pathology (TauPS2APP), chronic TREM2 agonist antibody treatment had limited impact on microglia engagement with pathology, overall pathology burden, or downstream neuronal damage. For mice with demyelinating injuries triggered acutely with lysolecithin, TREM2 agonist antibodies unexpectedly disrupted injury resolution. Likewise, TREM2 agonist antibodies limited myelin recovery for mice experiencing chronic demyelination from cuprizone. We highlight the contributions of dose timing and frequency across models. These results introduce important considerations for future TREM2-targeting approaches.Significance Statement Multiple TREM2 agonist antibodies are investigated in mouse models of Alzheimer's Disease and Multiple Sclerosis. Despite agonism in culture models and after acute dosing in mice, antibodies do not show benefit in overall AD pathology and worsen recovery after demyelination.

11.
Nature ; 574(7777): 249-253, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578523

RESUMO

The integrity of the mammalian epidermis depends on a balance of proliferation and differentiation in the resident population of stem cells1. The kinase RIPK4 and the transcription factor IRF6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft-tissue fusions that result in neonatal lethality2-5. Our understanding of how these genes control epidermal differentiation is incomplete. Here we show that the role of RIPK4 in mouse development requires its kinase activity; that RIPK4 and IRF6 expressed in the epidermis regulate the same biological processes; and that the phosphorylation of IRF6 at Ser413 and Ser424 primes IRF6 for activation. Using RNA sequencing (RNA-seq), histone chromatin immunoprecipitation followed by sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) of skin in wild-type and IRF6-deficient mouse embryos, we define the transcriptional programs that are regulated by IRF6 during epidermal differentiation. IRF6 was enriched at bivalent promoters, and IRF6 deficiency caused defective expression of genes that are involved in the metabolism of lipids and the formation of tight junctions. Accordingly, the lipid composition of the stratum corneum of Irf6-/- skin was abnormal, culminating in a severe defect in the function of the epidermal barrier. Collectively, our results explain how RIPK4 and IRF6 function to ensure the integrity of the epidermis and provide mechanistic insights into why developmental syndromes that are characterized by orofacial, skin and genital abnormalities result when this axis goes awry.


Assuntos
Diferenciação Celular , Células Epidérmicas/citologia , Epiderme/fisiologia , Fatores Reguladores de Interferon/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Anormalidades Múltiplas/genética , Animais , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Células Epidérmicas/metabolismo , Epiderme/embriologia , Anormalidades do Olho/genética , Feminino , Dedos/anormalidades , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Joelho/anormalidades , Articulação do Joelho/anormalidades , Lábio/anormalidades , Metabolismo dos Lipídeos/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sindactilia/genética , Anormalidades Urogenitais/genética
12.
Proc Natl Acad Sci U S A ; 119(38): e2123117119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099298

RESUMO

Acinetobacter baumannii is a clinically important, predominantly health care-associated gram-negative bacterium with high rates of emerging resistance worldwide. Given the urgent need for novel antibacterial therapies against A. baumannii, we focused on inhibiting lipoprotein biosynthesis, a pathway that is essential for envelope biogenesis in gram-negative bacteria. The natural product globomycin, which inhibits the essential type II signal peptidase prolipoprotein signal peptidase (LspA), is ineffective against wild-type A. baumannii clinical isolates due to its poor penetration through the outer membrane. Here, we describe a globomycin analog, G5132, that is more potent against wild-type and clinical A. baumannii isolates. Mutations leading to G5132 resistance in A. baumannii map to the signal peptide of a single hypothetical gene, which we confirm encodes an alanine-rich lipoprotein and have renamed lirL (prolipoprotein signal peptidase inhibitor resistance lipoprotein). LirL is a highly abundant lipoprotein primarily localized to the inner membrane. Deletion of lirL leads to G5132 resistance, inefficient cell division, increased sensitivity to serum, and attenuated virulence. Signal peptide mutations that confer resistance to G5132 lead to the accumulation of diacylglyceryl-modified LirL prolipoprotein in untreated cells without significant loss in cell viability, suggesting that these mutations overcome a block in lipoprotein biosynthetic flux by decreasing LirL prolipoprotein substrate sensitivity to processing by LspA. This study characterizes a lipoprotein that plays a critical role in resistance to LspA inhibitors and validates lipoprotein biosynthesis as a antibacterial target in A. baumannii.


Assuntos
Acinetobacter baumannii , Antibacterianos , Ácido Aspártico Endopeptidases , Proteínas de Bactérias , Farmacorresistência Bacteriana , Furanos , Deleção de Genes , Lipoproteínas , Inibidores de Proteases , Piridinas , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Ácido Aspártico Endopeptidases/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Furanos/farmacologia , Lipoproteínas/biossíntese , Lipoproteínas/genética , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Sinais Direcionadores de Proteínas/genética , Piridinas/farmacologia
13.
Bioconjug Chem ; 35(5): 593-603, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592684

RESUMO

Ferritin is a multivalent, self-assembling protein scaffold found in most human cell types, in addition to being present in invertebrates, higher plants, fungi, and bacteria, that offers an attractive alternative to polymer-based drug delivery systems (DDS). In this study, the utility of the ferritin cage as a DDS was demonstrated within the context of T cell agonism for tumor killing. Members of the tumor necrosis factor receptor superfamily (TNFRSF) are attractive targets for the development of anticancer therapeutics. These receptors are endogenously activated by trimeric ligands that occur in transmembrane or soluble forms, and oligomerization and cell-surface anchoring have been shown to be essential aspects of the targeted agonism of this receptor class. Here, we demonstrated that the ferritin cage could be easily tailored for multivalent display of anti-OX40 antibody fragments on its surface and determined that these arrays are capable of pathway activation through cell-surface clustering. Together, these results confirm the utility, versatility, and developability of ferritin as a DDS.


Assuntos
Ferritinas , Humanos , Ferritinas/química , Ferritinas/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Sistemas de Liberação de Medicamentos
14.
J Lipid Res ; 64(6): 100375, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075981

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality. Prognostic biomarkers to identify rapid progressors are urgently needed to improve patient management. Since the lysophosphatidic acid (LPA) pathway has been implicated in lung fibrosis in preclinical models and identified as a potential therapeutic target, we aimed to investigate if bioactive lipid LPA species could be prognostic biomarkers that predict IPF disease progression. LPAs and lipidomics were measured in baseline placebo plasma of a randomized IPF-controlled trial. The association of lipids with disease progression indices were assessed using statistical models. Compared to healthy, IPF patients had significantly higher levels of five LPAs (LPA16:0, 16:1, 18:1, 18:2, 20:4) and reduced levels of two triglycerides species (TAG48:4-FA12:0, -FA18:2) (false discovery rate < 0.05, fold change > 2). Patients with higher levels of LPAs had greater declines in diffusion capacity of carbon monoxide over 52 weeks (P < 0.01); additionally, LPA20:4-high (≥median) patients had earlier time to exacerbation compared to LPA20:4-low (

Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Progressão da Doença , Lisofosfolipídeos , Biomarcadores
15.
Anal Chem ; 95(30): 11491-11498, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478487

RESUMO

Recent advances in native mass spectrometry (MS) and denatured intact protein MS have made these techniques essential for biotherapeutic characterization. As MS analysis has increased in throughput and scale, new data analysis workflows are needed to provide rapid quantitation from large datasets. Here, we describe the UniDec processing pipeline (UPP) for the analysis of batched biotherapeutic intact MS data. UPP is built into the UniDec software package, which provides fast processing, deconvolution, and peak detection. The user and programming interfaces for UPP read a spreadsheet that contains the data file names, deconvolution parameters, and quantitation settings. After iterating through the spreadsheet and analyzing each file, it returns a spreadsheet of results and HTML reports. We demonstrate the use of UPP to measure the correct pairing percentage on a set of bispecific antibody data and to measure drug-to-antibody ratios from antibody-drug conjugates. Moreover, because the software is free and open-source, users can easily build on this platform to create customized workflows and calculations. Thus, UPP provides a flexible workflow that can be deployed in diverse settings and for a wide range of biotherapeutic applications.


Assuntos
Análise de Dados , Software , Espectrometria de Massas/métodos , Fluxo de Trabalho
16.
Anal Chem ; 94(42): 14593-14602, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36179215

RESUMO

Immune monitoring in cancer immunotherapy involves screening CD8+ T-cell responses against neoantigens, the tumor-specific peptides presented by Major histocompatibility complex Class I (MHCI) on the cell surface. High-throughput immune monitoring requires methods to produce and characterize small quantities of thousands of MHCI-peptide complexes that may be tested for a patient's T-cell response. MHCI synthesis has been achieved using a photocleavable peptide that is exchanged by the neoantigen; however, assays that measure peptide exchange currently disassemble the complex prior to analysis─precluding direct molecular characterization. Here, we use native mass spectrometry (MS) to profile intact recombinant MHCI complexes and directly measure peptide exchange. Coupled with size-exclusion chromatography or capillary-zone electrophoresis, the assay identified all tested human leukocyte antigen (HLA)/peptide combinations in the nanomole to picomole range with minimal run time, reconciling the synthetic and analytical requirements of MHCI-peptide screening with the downstream T-cell assays. We further show that the assay can be "multiplexed" by measuring exchange of multiple peptides simultaneously and also enables calculation of Vc50, a measure of gas-phase stability. Additionally, MHCI complexes were fragmented by top-down sequencing, demonstrating that the intact complex, peptide sequence, and their binding affinity can be determined in a single analysis. This screening tool for MHCI-neoantigen complexes represents a step toward the application of state-of-the-art MS technology in translational settings. Not only is this assay already informing on the viability of immunotherapy in practice, the platform also holds promise to inspire novel MS readouts for increasingly complex biomolecules used in the diagnosis and treatment of disease.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Humanos , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/química , Espectrometria de Massas , Antígenos HLA , Antígenos de Neoplasias
17.
Proc Natl Acad Sci U S A ; 116(33): 16420-16429, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31371506

RESUMO

Multiple myeloma (MM) arises from malignant immunoglobulin (Ig)-secreting plasma cells and remains an incurable, often lethal disease despite therapeutic advances. The unfolded-protein response sensor IRE1α supports protein secretion by deploying a kinase-endoribonuclease module to activate the transcription factor XBP1s. MM cells may co-opt the IRE1α-XBP1s pathway; however, the validity of IRE1α as a potential MM therapeutic target is controversial. Genetic disruption of IRE1α or XBP1s, or pharmacologic IRE1α kinase inhibition, attenuated subcutaneous or orthometastatic growth of MM tumors in mice and augmented efficacy of two established frontline antimyeloma agents, bortezomib and lenalidomide. Mechanistically, IRE1α perturbation inhibited expression of key components of the endoplasmic reticulum-associated degradation machinery, as well as secretion of Ig light chains and of cytokines and chemokines known to promote MM growth. Selective IRE1α kinase inhibition reduced viability of CD138+ plasma cells while sparing CD138- cells derived from bone marrows of newly diagnosed or posttreatment-relapsed MM patients, in both US- and European Union-based cohorts. Effective IRE1α inhibition preserved glucose-induced insulin secretion by pancreatic microislets and viability of primary hepatocytes in vitro, as well as normal tissue homeostasis in mice. These results establish a strong rationale for developing kinase-directed inhibitors of IRE1α for MM therapy.


Assuntos
Endorribonucleases/genética , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Idoso , Animais , Bortezomib/farmacologia , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/antagonistas & inibidores , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lenalidomida/farmacologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Bacteriol ; 203(13): e0014921, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33875545

RESUMO

Lipoprotein diacylglyceryl transferase (Lgt) catalyzes the first step in the biogenesis of Gram-negative bacterial lipoproteins which play crucial roles in bacterial growth and pathogenesis. We demonstrate that Lgt depletion in a clinical uropathogenic Escherichia coli strain leads to permeabilization of the outer membrane and increased sensitivity to serum killing and antibiotics. Importantly, we identify G2824 as the first-described Lgt inhibitor that potently inhibits Lgt biochemical activity in vitro and is bactericidal against wild-type Acinetobacter baumannii and E. coli strains. While deletion of a gene encoding a major outer membrane lipoprotein, lpp, leads to rescue of bacterial growth after genetic depletion or pharmacologic inhibition of the downstream type II signal peptidase, LspA, no such rescue of growth is detected after Lgt depletion or treatment with G2824. Inhibition of Lgt does not lead to significant accumulation of peptidoglycan-linked Lpp in the inner membrane. Our data validate Lgt as a novel antibacterial target and suggest that, unlike downstream steps in lipoprotein biosynthesis and transport, inhibition of Lgt may not be sensitive to one of the most common resistance mechanisms that invalidate inhibitors of bacterial lipoprotein biosynthesis and transport. IMPORTANCE As the emerging threat of multidrug-resistant (MDR) bacteria continues to increase, no new classes of antibiotics have been discovered in the last 50 years. While previous attempts to inhibit the lipoprotein biosynthetic (LspA) or transport (LolCDE) pathways have been made, most efforts have been hindered by the emergence of a common mechanism leading to resistance, namely, the deletion of the gene encoding a major Gram-negative outer membrane lipoprotein lpp. Our unexpected finding that inhibition of Lgt is not susceptible to lpp deletion-mediated resistance uncovers the complexity of bacterial lipoprotein biogenesis and the corresponding enzymes involved in this essential outer membrane biogenesis pathway and potentially points to new antibacterial targets in this pathway.


Assuntos
Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Transferases/metabolismo , Animais , Antibacterianos/farmacologia , Ácido Aspártico Endopeptidases , Proteínas de Bactérias , Escherichia coli/genética , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Camundongos , Peptidoglicano/metabolismo , Transferases/química , Transferases/genética , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo
19.
Nature ; 528(7582): 370-5, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26649818

RESUMO

Inactivation of the TNFAIP3 gene, encoding the A20 protein, is associated with critical inflammatory diseases including multiple sclerosis, rheumatoid arthritis and Crohn's disease. However, the role of A20 in attenuating inflammatory signalling is unclear owing to paradoxical in vitro and in vivo findings. Here we utilize genetically engineered mice bearing mutations in the A20 ovarian tumour (OTU)-type deubiquitinase domain or in the zinc finger-4 (ZnF4) ubiquitin-binding motif to investigate these discrepancies. We find that phosphorylation of A20 promotes cleavage of Lys63-linked polyubiquitin chains by the OTU domain and enhances ZnF4-mediated substrate ubiquitination. Additionally, levels of linear ubiquitination dictate whether A20-deficient cells die in response to tumour necrosis factor. Mechanistically, linear ubiquitin chains preserve the architecture of the TNFR1 signalling complex by blocking A20-mediated disassembly of Lys63-linked polyubiquitin scaffolds. Collectively, our studies reveal molecular mechanisms whereby A20 deubiquitinase activity and ubiquitin binding, linear ubiquitination, and cellular kinases cooperate to regulate inflammation and cell death.


Assuntos
Cisteína Endopeptidases/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Animais , Morte Celular , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Feminino , Inflamação/genética , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fosforilação , Poliubiquitina/química , Poliubiquitina/metabolismo , Ligação Proteica , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação
20.
BMC Pulm Med ; 21(1): 301, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556083

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) exacerbations are heterogenous and profoundly impact the disease trajectory. Bioactive lipid lysophosphatidic acid (LPA) has been implicated in airway inflammation but the significance of LPA in COPD exacerbation is not known. The aim of the study was to investigate the utility of serum LPA species (LPA16:0, 18:0, 18:1, 18:2, 20:4) as biomarkers of COPD exacerbation. PATIENTS AND METHODS: LPA species were measured in the baseline placebo sera of a COPD randomized controlled trial. Tertile levels of each LPA were used to assign patients into biomarker high, medium, and low subgroups. Exacerbation rate and risk were compared among the LPA subgroups. RESULTS: The levels of LPA species were intercorrelated (rho 0.29-0.91). Patients with low and medium levels of LPA (LPA16:0, 20:4) had significantly higher exacerbation rate compared to the respective LPA-high patients [estimated rate per patient per year (95% CI)]: LPA16:0-low = 1.2 (0.8-1.9) (p = 0.019), LPA16:0-medium = 1.3 (0.8-2.0) (p = 0.013), LPA16:0-high = 0.5 (0.2-0.9); LPA20:4-low = 1.4 (0.9-2.1) (p = 0.0033), LPA20:4-medium = 1.2 (0.8-1.8) (p = 0.0089), LPA20:4-high = 0.4 (0.2-0.8). These patients also had earlier time to first exacerbation (hazard ratio (95% CI): LPA16:0-low = 2.6 (1.1-6.0) (p = 0.028), LPA16:0-medium = 2.7 (1.2-6.3) (p = 0.020); LPA20.4-low = 2.8 (1.2-6.6) (p = 0.017), LPA20:4-medium = 2.7 (1.2-6.4) (p = 0.021). Accordingly, these patients had a significant increased exacerbation risk compared to the respective LPA-high subgroups [odd ratio (95% CI)]: LPA16:0-low = 3.1 (1.1-8.8) (p = 0.030), LPA16:0-medium = 3.0 (1.1-8.3) (p = 0.031); LPA20:4-low = 3.8 (1.3-10.9) (p = 0.012), LPA20:4-medium = 3.3 (1.2-9.5) (p = 0.025). For the other LPA species (LPA18:0, 18:1, 18:2), the results were mixed; patients with low and medium levels of LPA18:0 and 18:2 had increased exacerbation rate, but only LPA18:0-low patients had significant increase in exacerbation risk and earlier time to first exacerbation compared to the LPA18:0-high subgroup. CONCLUSIONS: The study provided evidence of association between systemic LPA levels and exacerbation in COPD. Patients with low and medium levels of specific LPA species (LPA16:0, 20:4) had increased exacerbation rate, risk, and earlier time to first exacerbation. These non-invasive biomarkers may aid in identifying high risk patients with dysregulated LPA pathway to inform risk management and drug development.


Assuntos
Lisofosfolipídeos/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Idoso , Biomarcadores/sangue , Progressão da Doença , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Ensaios Clínicos Controlados Aleatórios como Assunto , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA