Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(1): 605-611, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33350840

RESUMO

We present a strong coupling system realized by coupling the localized surface plasmon mode in individual silver nanogrooves and propagating surface plasmon modes launched by periodic nanogroove arrays with varied periodicities on a continuous silver medium. When the propagating modes are in resonance with the localized mode, we observe a √N scaling of Rabi splitting energy, where N is the number of propagating modes coupled to the localized mode. Here, we confirm a giant Rabi splitting on the order of 450-660 meV (N = 2) in the visible spectral range, and the corresponding coupling strength is 160-235 meV. In some of the strong coupling cases studied by us, the coupling strength is about 10% of the mode energy, reaching the ultrastrong coupling regime.

2.
Nano Lett ; 21(6): 2596-2602, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689382

RESUMO

Non-Hermitian photonic systems with gains and/or losses have recently emerged as a powerful approach for topology-protected optical transport and novel device applications. To date, most of these systems employ coupled optical systems of diffraction-limited dielectric waveguides or microcavities, which exchange energy spatially or temporally. Here, we introduce a diffraction-unlimited approach using a plasmon-exciton coupling (polariton) system with tunable plasmonic resonance (energy and line width) and coupling strength. By designing a chirped silver nanogroove cavity array and coupling a single tungsten disulfide monolayer with a large contrast in resonance line width, we show the tuning capability through energy level anticrossing and plasmon-exciton hybridization (line width crossover), as well as spontaneous symmetry breaking across the exceptional point at zero detuning. This two-dimensional hybrid material system can be applied as a scalable and integratable platform for non-Hermitian photonics, featuring seamless integration of two-dimensional materials, broadband tuning, and operation at room temperature.

3.
Nat Commun ; 13(1): 6485, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36309528

RESUMO

Bound states in the continuum (BICs) in photonic crystals describe the originally leaky Bloch modes that can become bounded when their radiation fields carry topological polarization singularities. However, topological polarization singularities do not carry energy to far field, which limits radiation efficiencies of BICs for light emitting applications. Here, we demonstrate a topological polarization singular laser which has a topological polarization singular channel in the second Brillouin zone and a paired linearly polarized radiation channel in the first Brillouin zone. The presence of the singular channel enables the lasing mode with a higher quality factor than other modes for single mode lasing. In the meanwhile, the presence of the radiation channel secures the lasing mode with high radiation efficiency. The demonstrated topological polarization singular laser operates at room temperature with an external quantum efficiency exceeding 24%. Our work presents a new paradigm in eigenmode engineering for mode selection, exotic field manipulation and lasing.

4.
ACS Nano ; 14(7): 8838-8845, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32589398

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive technique to identify vibrational fingerprints of trace analytes. However, present SERS techniques suffer from the lack of uniform, reproducible, and stable substrates to control the plasmonic hotspots in a wide spectral range. Here, we report the promising application of epitaxial aluminum films as a scalable plasmonic platform for SERS applications. To assess the uniformity of aluminum substrates, atomically thin transition metal dichalcogenide monolayers are used as the benchmark analyte due to their inherent two-dimensional homogeneity. Besides the distinctive spectral capability of aluminum in the ultraviolet (325 nm), we demonstrate that the aluminum substrates can even perform comparably with the silver counterparts made from single-crystalline colloidal silver crystals using the same SERS substrate design in the visible range (532 nm). This is unexpected from the prediction solely based on optical dielectric functions and illustrate the superior surface and interface properties of epitaxial aluminum SERS substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA