Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Mycol ; 56(4): 479-484, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992125

RESUMO

Cryptococcus gattii is one of the etiologic agents of cryptococcosis, a systemic mycosis that occurs in healthy and immunosuppressed humans and animals worldwide. Primary pulmonary infection caused by C. gattii is usually followed by fungal dissemination to the central nervous system, resulting in high mortality rates. In this context, animal models of cryptococcosis are useful in the study of fungal pathogenesis and host response against the pathogen, and for testing novel therapeutic options. The most frequently applied method to study fungal dissemination from the lungs to other organs is by culturing tissues, which is not accurate for the detection and quantification of fungal load at early stages of the infection. To overcome this problem, the purpose of this study was to develop a new method for the quantification of Cryptococcus dissemination. One C. gattii strain was efficiently radiolabeled with technetium-99m (99mTc), without affecting viability of the cells. Further, the 99mTc-C. gattii (111 MBq) strain was used to infect mice by intratracheal and intravenous route for biodistribution studies. 99mTc-C. gattii was successfully used in detection of the yeast in the brain of mice 6 hours postinoculation, while the detection using colony forming units was possible only 24 hours postinfection. Our results provided an alternative method that could be applied in further investigations regarding the efficacy of antifungals, fungal virulence, and host-pathogen interactions.


Assuntos
Criptococose/microbiologia , Cryptococcus gattii/fisiologia , Tecnécio , Animais , Contagem de Colônia Microbiana , Cryptococcus gattii/metabolismo , Modelos Animais de Doenças , Humanos , Marcação por Isótopo , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tecnécio/análise , Tecnécio/metabolismo , Distribuição Tecidual
2.
Sci Total Environ ; 681: 516-523, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31121401

RESUMO

Agrochemicals such as the non-azoles, used to improve crop productivity, poses severe undesirable effects on the environment and human health. In addition, they induce cross-resistance (CR) with clinical drugs in pathogenic fungi. However, till date emphasis has been given to the role of azoles on the induction of CR. Herein, we analyzed the effect of a non-azole agrochemical, pyraclostrobin (PCT), on the antifungal susceptibility and virulence of the human and animal pathogens Cryptococcus gattii and C. neoformans. We determined the minimum inhibitory concentration (MIC) of fluconazole (FLC), itraconazole, ravuconazole, amphotericin B, and PCT on colonies: (i) that were not exposed to PCT (non-adapted-NA-cultures), (ii) were exposed at the maximum concentration of PCT (adapted-A-cultures) and (iii) the adapted colonies after cultivation 10 times in PCT-free media (10 passages-10p-cultures). Our results showed that exposure to PCT induced both temporary and permanent CR to clinical azoles in a temperature-dependent manner. With the objective to understand the mechanism of induction of CR through non-azoles, the transcriptomes of NA and 10p cells from C. gattii R265 were analyzed. The transcriptomic analysis showed that expression of the efflux-pump genes (AFR1 and MDR1) and PCT target was higher in resistant 10p cells than that in NA. Moreover, the virulence of 10p cells was reduced as compared to NA cells in mice, as observed by the differential gene expression analysis of genes related to ion-metabolism. Additionally, we observed that FLC could not increase the survival rate of mice infected with 10p cells, confirming the occurrence of permanent CR in vivo. The findings of the present study demonstrate that the non-azole agrochemical PCT can induce permanent CR to clinical antifungals through increased expression of efflux pump genes in resistant cells and that such phenomenon also manifests in vivo.


Assuntos
Agroquímicos , Antifúngicos , Cryptococcus gattii/fisiologia , Farmacorresistência Fúngica/fisiologia , Estrobilurinas/toxicidade , Animais , Cryptococcus neoformans , Humanos , Camundongos , Testes de Sensibilidade Microbiana
3.
Int J Antimicrob Agents ; 54(3): 301-308, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31279153

RESUMO

Approximately 180,000 people worldwide die from cryptococcosis each year, probably due to the ineffectiveness and toxicity of drugs currently available to treat the disease. Amphotericin B (AMB) is effective for killing the fungus, but has serious adverse effects linked to excessive production of reactive oxygen species which compromise renal function. Pioglitazone (PIO) is a peroxisome proliferator-activated receptor-γ agonist widely repositioned as an adjuvant of various drugs that have toxic effects due to its antioxidant and anti-inflammatory effects. This study evaluated PIO in combination with AMB for the treatment of cryptococcosis. PIO was found to reduce serum creatinine and glutamic-oxalacetic transaminase levels in mice treated with PIO+AMB. In vitro, PIO was able to control harmful oxidative bursts induced by AMB without compromising the antifungal effect. In vivo, PIO+AMB increased the survival rate compared with AMB alone, and improved the morbidity of the animals. PIO+AMB was more efficient than AMB alone for inhibiting fungal transmigration from the lungs to the brain, and killing yeasts that reached the central nervous system, avoiding the establishment of meningoencephalitis. In a phagocytosis assay, PIO did not influence the engulfment and fungicidal activity of macrophages induced by AMB, but reduced the oxidative bursts after the reduction of fungal burden, pointing to control of the pathogen without leading to excessive stress which can be damaging to the host. In conclusion, PIO+AMB was found to ameliorate cryptococcosis in a murine model, indicating that it is a promising therapeutic adjuvant for combating and controlling this fungal infection.


Assuntos
Anfotericina B/administração & dosagem , Antifúngicos/administração & dosagem , Antioxidantes/administração & dosagem , Criptococose/tratamento farmacológico , Pioglitazona/administração & dosagem , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Criptococose/patologia , Cryptococcus gattii/efeitos dos fármacos , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Quimioterapia Combinada/métodos , Camundongos Endogâmicos C57BL , Pioglitazona/farmacologia , Análise de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA