RESUMO
The exchange of phosphorus (P) and carbon (C) between plants and arbuscular mycorrhizal fungi (AMF) is a major determinant of their mutualistic symbiosis. We explored the C dynamics in tomato (Solanum lycorpersicum) inoculated or not with Rhizophagus irregularis to study their growth response under different NaH2 PO4 concentrations (Null P, 0 mM; Low P, 0.065 mM; High P, 1.3 mM). The percentage of AMF colonization was similar in plants under Null and Low P, but severely reduced under High P. However, the AMF mass biomarker 16:1ω5 revealed higher fungal accumulation in inoculated roots under Low P, while more AMF spores were produced in the Null P. Under High P, AMF biomass and spores were strongly reduced. Plant growth response to mycorrhiza was negative under Null P, showing reduction in height, biovolume index, and source leaf (SL) area. Under Low P, inoculated plants showed a positive response (e.g., increased SL area), while inoculated plants under High P were similar to non-inoculated plants. AMF promoted the accumulation of soluble sugars in the SL under all fertilization levels, whereas the soluble sugar level decreased in roots under Low P in inoculated plants. Transcriptional upregulation of SlLIN6 and SlSUS1, genes related to carbohydrate metabolism, was observed in inoculated roots under Null P and Low P, respectively. We conclude that P-limiting conditions that increase AMF colonization stimulate plant growth due to an increase in the source and sink strength. Our results suggest that C partitioning and allocation to different catabolic pathways in the host are influenced by AMF performance.
Assuntos
Micorrizas , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Simbiose , Plantas , Carboidratos , LipídeosRESUMO
MAIN CONCLUSIONS: Bacillus paralicheniformis TRQ65 reprograms the gene expression patterns associated with systemic response to potentially facilitate its colonization and stimulate cell growth and plant biomass. Plant growth-promoting rhizobacteria (PGPR) carry out numerous mechanisms that enhance growth in seedlings, such as nutrient solubilization, phytohormone production, biocontrol activity, and regulation of induced systemic resistance (ISR) and acquired systemic resistance (ASR). Bacillus paralicheniformis TRQ65 is a biological and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere. In this study, we performed a transcriptomic analysis of wheat seedlings inoculated with the native rhizobacterium Bacillus paralicheniformis TRQ65 (1 × 107 cellsâg -1 of soil) at early development stages (GS15). A morphometrical assay was carried out to confirm growth promotion and after the cultivation period, TRQ65 was re-isolated to define inoculum persistence. Inoculated seedlings showed a significant (P < 0.05) increase in shoot length (93.48%) and dry weight in both shoot (117.02%) and root (48.33%) tissues; also, the strain persisted in the soil at 1.4 × 107 UFCâg-1 of soil. A total of 228 differentially expressed genes (DEGs) (FDR < 0.05 and |log2 fold change|≥ 1.3) were observed in response to TRQ65 inoculation, of which 185 were down-regulated and 43 were up-regulated. The transcriptional patterns were characterized by the regulation of multidimensional cell growth (ROS, Ca+2 channel, and NADPH oxidases activity), suppression of defense mechanism (PR proteins, PDFs, ROS, transcription factors), induction of central stimuli receptors (RALF, WAK, MAPK), carbohydrate metabolism (invertase activity) and phytohormone-related transport (ABCG transporter and AAAP). These results suggest that B. paralicheniformis TRQ65 is a promising bioinoculant agent for increasing wheat growth and development by reprogramming ISR and ASR simultaneously, suppressing defense mechanisms and inducing central stimuli response.
Assuntos
Bacillus , Triticum , Ciclo Celular , Plântula/genética , Triticum/genéticaRESUMO
Salinity is one of the most important factors that limit the productivity of agricultural soils. Certain plant growth-promoting bacteria (PGPB) have the ability to stimulate the growth of crop plants even under salt stress. In the present study, we analysed the potential of PGPB Bacillus toyonensis COPE52 to improve the growth of tomato plants and its capacity to modify its membrane lipid and fatty acid composition under salt stress. Thus, strain COPE52 increased the relative amount of branched chain fatty acids (15:0i and 16:1∆9) and accumulation of an unknown membrane lipid, while phosphatidylethanolamine (PE) levels decreased during growth with 100 and 200 mM NaCl. Importantly, direct and indirect plant growth-promoting (PGP) mechanisms of B. toyonensis COPE52, such as indole-3-acetic acid (IAA), protease activity, biofilm formation, and antifungal activity against Botrytis cinerea, remained unchanged in the presence of NaCl in vitro, compared to controls without salt. In a greenhouse experiment, tomato plants (Lycopersicon esculentum 'Saladette') showed increased shoot and root length, higher dry biomass, and chlorophyll content when inoculated with B. toyonensis COPE52 at 0 and 100 mM NaCl. In summary, these results indicate that Bacillus toyonensis COPE52 can modify cell membrane lipid components as a potential protecting mechanism to maintain PGP traits under saline-soil conditions.
Assuntos
Solanum lycopersicum , Antifúngicos/farmacologia , Bacillus , Botrytis , Ácidos GraxosRESUMO
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Assuntos
Desenvolvimento Vegetal , Solo , Agricultura , Raízes de Plantas , Rizosfera , Microbiologia do SoloRESUMO
This work focuses on the evaluation of the electrochemical dewatering of sludge obtained in the coagulation of wastes polluted with oxyfluorfen. To do this, sludge samples were treated, aiming not only to reduce the sludge volume, but also to facilitate the degradation of oxyfluorfen contained in the cake via electrolysis with a boron-doped diamond anode. Results show that water can be effectively recovered through three sequential stages. First, a gravity-driven stage, that can recover around 60% of initial volume and where no oxyfluorfen is dragged. Then, a second stage that involves the application of pressure and which accounts for the recuperation of an additional 25% of the total volume of the water removed and in which oxyfluorfen also remained in the cake. Finally, an electrochemical stage, which involves the application of electricity with increasing electric fields (1.0, 2.0, 4.0, and 16.0 V cm-1), accounting for the recovery of the rest of water released and where an electrolytic degradation of oxyfluorfen is obtained, whose extension depends on the electrode configuration used in the electro-dewatering cell. This electrode configuration also influences the retention or loss of oxyfluorfen from the cake, being the optimum choice the placement of the cathode downstream, next to the outlet of the dewatering cell.
Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Floculação , Éteres Difenil Halogenados , ÁguaRESUMO
Chlorothalonil is a commonly used fungicide to control the karnal bunt caused by Tilletia indica Mitra in wheat production from the Yaqui Valley, Mexico. Here, the effect of Chlorothalonil on the growth of 132 bacterial strains associated with wheat rhizosphere from the Yaqui Valley was evaluated, as well as their ability to produce indoles. Thirty-three percent of the evaluated strains were inhibited by Chlorothalonil, being Bacillus and Paenibacillus the most inhibited genera, observing an inhibition >50% of their strains. In addition, 49% of the inhibited strains showed the ability to produce indoles (>5 µg/mL), where the genus Bacillus was the most abundant (80%). The remaining strains (67%) were tolerant to the evaluated fungicide, but only 37% of those showed the ability to produce indoles, which could be considered as Plant Growth Promoting Rhizobacteria (PGPR). These results showed that Chlorothalonil is not only an antifungal compound but also inhibits the growth of bacterial strains with the ability to produce indoles. Thus, the intensive application of fungicides to agro-systems needs more validation in order to develop sustainable agricultural practices for food production.
Assuntos
Bacillus/efeitos dos fármacos , Fungicidas Industriais/efeitos adversos , Nitrilas/efeitos adversos , Paenibacillus/efeitos dos fármacos , Rizosfera , Bacillus/metabolismo , Bacillus/fisiologia , Indóis/metabolismo , México , Paenibacillus/metabolismo , Paenibacillus/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Triticum/microbiologiaRESUMO
KEY MESSAGE: Our results show that Sorghum bicolor is able to recognize bacteria through its volatile compounds and differentially respond to beneficial or pathogens via eliciting nutritional or defense adaptive traits. Plants establish beneficial, harmful, or neutral relationships with bacteria. Plant growth promoting rhizobacteria (PGPR) emit volatile compounds (VCs), which may act as molecular cues influencing plant development, nutrition, and/or defense. In this study, we compared the effects of VCs produced by bacteria with different lifestyles, including Arthrobacter agilis UMCV2, Bacillus methylotrophicus M4-96, Sinorhizobium meliloti 1021, the plant pathogen Pseudomonas aeruginosa PAO1, and the commensal rhizobacterium Bacillus sp. L2-64, on S. bicolor. We show that VCs from all tested bacteria, except Bacillus sp. L2-64, increased biomass and chlorophyll content, and improved root architecture, but notheworthy A. agilis induced the release of attractant molecules, whereas P. aeruginosa activated the exudation of growth inhibitory compounds by roots. An analysis of the expression of iron-transporters SbIRT1, SbIRT2, SbYS1, and SbYS2 and genes related to plant defense pathways COI1 and PR-1 indicated that beneficial, pathogenic, and commensal bacteria could up-regulate iron transporters, whereas only beneficial and pathogenic species could induce a defense response. These results show how S. bicolor could recognize bacteria through their volatiles profiles and highlight that PGPR or pathogens can elicit nutritional or defensive traits in plants.
Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Transporte de Cátions/genética , Imunidade Inata/genética , Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sorghum/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Bactérias/genética , Bactérias/imunologia , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Ferro/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Rizosfera , Transdução de Sinais/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Sorghum/genética , Sorghum/microbiologiaRESUMO
Mutations accumulate during all stages of growth, but only germ line mutations contribute to evolution. While meiosis contributes to evolution by reassortment of parental alleles, we show here that the process itself is inherently mutagenic. We have previously shown that the DNA synthesis associated with repair of a double-strand break is about 1000-fold less accurate than S-phase synthesis. Since the process of meiosis involves many programmed DSBs, we reasoned that this repair might also be mutagenic. Indeed, in the early 1960's Magni and Von Borstel observed elevated reversion of recessive alleles during meiosis, and found that the revertants were more likely to be associated with a crossover than non-revertants, a process that they called "the meiotic effect." Here we use a forward mutation reporter (CAN1 HIS3) placed at either a meiotic recombination coldspot or hotspot near the MAT locus on Chromosome III. We find that the increased mutation rate at CAN1 (6 to 21 -fold) correlates with the underlying recombination rate at the locus. Importantly, we show that the elevated mutation rate is fully dependent upon Spo11, the protein that introduces the meiosis specific DSBs. To examine associated recombination we selected for random spores with or without a mutation in CAN1. We find that the mutations isolated this way show an increased association with recombination (crossovers, loss of crossover interference and/or increased gene conversion tracts). Polζ appears to contribute about half of the mutations induced during meiosis, but is not the only source of mutations for the meiotic effect. We see no difference in either the spectrum or distribution of mutations between mitosis and meiosis. The correlation of hotspots with elevated mutagenesis provides a mechanism for organisms to control evolution rates in a gene specific manner.
Assuntos
Meiose/genética , Mitose/genética , Taxa de Mutação , Recombinação Genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Cromossomos/metabolismo , Reparo do DNA/genética , Endodesoxirribonucleases/genética , Conversão Gênica/genética , Proteínas de Homeodomínio/genética , Mutação , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
The effect of electric fields on seed germination and development of ryegrass (Lolium perenne L.) was studied in clean and contaminated soil with heavy metals and/or PAHs. The application of 0.2 DCV/cm in clean soil near ryegrass seeds enhanced the germination by 75%. The presence of contaminants in soil hindered the germination and growing of ryegrass. However, the application of DC electric field favored the germination and growing of plants compensating the negative effects of the contaminants. The electrode material in anodes has a decisive influence in the germination and growing of ryegrass. Stable anode materials have to be used to avoid the release of toxic ions in the soil that affect the development of the plant. Graphite anodes are very appropriate because they are inexpensive and does not generate toxic effects on plants. The electro-phytoremediation of mixed contaminated soil with ryegrass showed very promising results, especially AC electric fields. The tests with AC current showed the highest biomass production in a treatment of 1 month. The more biomass production the more removal of heavy metals and PAHs from soil.
Assuntos
Campos Eletromagnéticos , Germinação , Lolium/genética , Lolium/metabolismo , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Condutividade Elétrica , Metais Pesados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidadeRESUMO
Arthrobacter agilis UMCV2 is a rhizosphere bacterium that promotes legume growth by solubilization of iron, which is supplied to the plant. A second growth promotion mechanism produces volatile compounds that stimulate iron uptake activities. Additionally, A. agilis UMCV2 is capable of inhibiting the growth of phytopathogens. A combination of quantitative polymerase chain reaction and fluorescence in situ hybridization techniques were used here to detect and quantify the presence of the bacterium in the internal tissues of the legume Medicago truncatula. Our results demonstrate that A. agilis UMCV2 behaves as an endophytic bacterium of M. truncatula, particularly in environments where iron is available.
Assuntos
Arthrobacter/fisiologia , Endófitos/fisiologia , Medicago/microbiologia , Inoculantes Agrícolas , Arthrobacter/genética , Arthrobacter/isolamento & purificação , Meios de Cultura , DNA Bacteriano/análise , Endófitos/genética , Endófitos/isolamento & purificação , Compostos Ferrosos/administração & dosagem , Ferro/metabolismo , Medicago/crescimento & desenvolvimento , Medicago/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , SimbioseRESUMO
Trichoderma uses different molecules to establish communication during its interactions with other organisms, such as effector proteins. Effectors modulate plant physiology to colonize plant roots or improve Trichoderma's mycoparasitic capacity. In the soil, these fungi can establish relationships with plant growth-promoting bacteria (PGPBs), thus affecting their overall benefits on the plant or its fungal prey, and possibly, the role of effector proteins. The aim of this study was to determine the induction of Trichoderma atroviride gene expression coding for effector proteins during the interaction with different PGPBs, Arabidopsis or the phytopathogen Fusarium brachygibbosum, and to determine whether PGPBs potentiates the beneficial effects of T. atroviride. During the interaction with F. brachygibbosum and PGPBs, the effector coding genes epl1, tatrx2 and tacfem1 increased their expression, especially during the consortia with the bacteria. During the interaction of T. atroviride with the plant and PGPBs, the expression of epl1 and tatrx2 increased, mainly with the consortium formed with Pseudomonas fluorescens UM270, Bacillus velezensis AF12, or B. halotolerans AF23. Additionally, the consortium formed by T. atroviride and R. badensis SER3 stimulated A. thaliana PR1:GUS and LOX2:GUS for SA- and JA-mediated defence responses. Finally, the consortium of T. atroviride with SER3 was better at inhibiting pathogen growth, but the consortium of T. atroviride with UM270 was better at promoting Arabidopsis growth. These results showed that the biocontrol capacity and plant growth-promoting traits of Trichoderma spp. can be potentiated by PGPBs by stimulating its effector functions.
Assuntos
Arabidopsis , Hypocreales , Trichoderma , Antifúngicos/metabolismo , Desenvolvimento Vegetal , Bactérias , Trichoderma/genéticaRESUMO
Phytoremediation is a sustainable technique that employs plants to reinforce polluted environments such as agroecosystems. In recent years, new strategies involving the plant microbiome as an adjuvant in remediation processes have been reported. By leveraging this microbial assistance to remediate soils contaminated with heavy metals such As, Pb, Cd, Hg, and Cr, plants can sequester, degrade, or stabilize contaminants more efficiently. Remarkably, some plant species are known for their hyper-accumulative traits in synergy with their microbial partners and can successfully mitigate heavy metal pollutants. This sustainable biotechnology based on plant-microbe associations not only aids in environmental cleanup but also enhances biodiversity, improves soil structure, and promotes plant growth and health, making it a promising solution for addressing agro-pollution challenges worldwide. The current review article emphasizes the potential of synergistic plant-microbe interactions in developing practical and sustainable solutions for heavy metal remediation in agricultural systems, which are essential for food security.
RESUMO
There is an increasing demand for bioinoculants based on plant growth-promoting rhizobacteria (PGPR) for use in agricultural ecosystems. However, there are still concerns and limited data on their reproducibility in different soil types and their effects on endemic rhizosphere communities. Therefore, this study explored the effects of inoculating the PGPR, Pseudomonas fluorescens strain UM270, on maize growth (Zea mays L.) and its associated rhizosphere bacteriome by sequencing the 16S ribosomal genes under greenhouse conditions. The results showed that inoculation with PGPR P. fluorescens UM270 improved shoot and root dry weights, chlorophyll concentration, and total biomass in the three soil types evaluated (clay, sandy-loam, and loam) compared to those of the controls. Bacterial community analysis of the three soil types revealed that maize plants inoculated with the UM270 strain showed a significant increase in Proteobacteria and Acidobacteria populations, whereas Actinobacteria and Bacteroidetes decreased. Shannon, Pielou, and Faith alpha-biodiversity indices did not reveal significant differences between treatments. Beta diversity revealed a bacterial community differential structure in each soil type, with some variation among treatments. Finally, some bacterial groups were found to co-occur and co-exclude with respect to UM270 inoculation. Considered together, these results show that PGPR P. fluorescens UM270 increases maize plant growth and has an important effect on the resident rhizobacterial communities of each soil type, making it a potential agricultural biofertilizer.
Assuntos
Raízes de Plantas , Pseudomonas fluorescens , Rizosfera , Microbiologia do Solo , Solo , Zea mays , Zea mays/microbiologia , Zea mays/crescimento & desenvolvimento , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas fluorescens/fisiologia , Solo/química , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Biomassa , Filogenia , BiodiversidadeRESUMO
Milpa is an agroecological production system based on the polyculture of plant species, with corn featuring as a central component. Traditionally, the milpa system does not require the application of chemicals, and so pest attacks and poor growth in poor soils can have adverse effects on its production. Therefore, the application of bioinoculants could be a strategy for improving crop growth and health; however, the effect of external inoculant agents on the endemic microbiota associated with corn has not been extensively studied. Here, the objective of this work was to fertilize a maize crop under a milpa agrosystem with the PGPR Pseudomonas fluorescens UM270, evaluating its impact on the diversity of the rhizosphere (rhizobiome) and root endophytic (root endobiome) microbiomes of maize plants. The endobiome of maize roots was evaluated by 16S rRNA and internal transcribed spacer region (ITS) sequencing, and the rhizobiome was assessed by metagenomic sequencing upon inoculation with the strain UM270. The results showed that UM270 inoculation of the rhizosphere of P. fluorescens UM270 did not increase alpha diversity in either the monoculture or milpa, but it did alter the endophytic microbiome of maize plant roots by stimulating the presence of bacterial operational taxonomic units (OTUs) of the genera Burkholderia and Pseudomonas (in a monoculture), whereas, in the milpa system, the PGPR stimulated greater endophytic diversity and the presence of genera such as Burkholderia, Variovorax, and N-fixing rhizobia genera, including Rhizobium, Mesorhizobium, and Bradyrhizobium. No clear association was found between fungal diversity and the presence of strain UM270, but beneficial fungi, such as Rizophagus irregularis and Exophiala pisciphila, were detected in the Milpa system. In addition, network analysis revealed unique interactions with species such as Stenotrophomonas sp., Burkholderia xenovorans, and Sphingobium yanoikuyae, which could potentially play beneficial roles in the plant. Finally, the UM270 strain does not seem to have a strong impact on the microbial diversity of the rhizosphere, but it does have a strong impact on some functions, such as trehalose synthesis, ammonium assimilation, and polyamine metabolism. The inoculation of UM270 biofertilizer in maize plants modifies the rhizo- and endophytic microbiomes with a high potential for stimulating plant growth and health in agroecological crop models.
RESUMO
A wide range of abiotic and biotic stresses adversely affect plant's growth and production. Under stress, one of the main responses of plants is the modulation of exudates excreted in the rhizosphere, which consequently leads to alterations in the resident microbiota. Thus, the exudates discharged into the rhizospheric environment play a preponderant role in the association and formation of plant-microbe interactions. In this review, we aimed to provide a synthesis of the latest and most pertinent literature on the diverse biochemical and structural compositions of plant root exudates. Also, this work investigates into their multifaceted role in microbial nutrition and intricate signaling processes within the rhizosphere, which includes quorum-sensing molecules. Specifically, it explores the contributions of low molecular weight compounds, such as carbohydrates, phenolics, organic acids, amino acids, and secondary metabolites, as well as the significance of high molecular weight compounds, including proteins and polysaccharides. It also discusses the state-of-the-art omics strategies that unveil the vital role of root exudates in plant-microbiome interactions, including defense against pathogens like nematodes and fungi. We propose multiple challenges and perspectives, including exploiting plant root exudates for host-mediated microbiome engineering. In this discourse, root exudates and their derived interactions with the rhizospheric microbiota should receive greater attention due to their positive influence on plant health and stress mitigation.
Assuntos
Microbiota , Raízes de Plantas , Raízes de Plantas/microbiologia , Microbiota/fisiologia , Exsudatos e Transudatos/metabolismo , Exsudatos de Plantas/metabolismo , Percepção de Quorum , Plantas/microbiologia , Rizosfera , Microbiologia do SoloRESUMO
The plant rhizosphere is regarded as a microbial hotspot due to a wide array of root exudates. These root exudates comprise diverse organic compounds such as phenolic, polysaccharides, flavonoids, fatty acids, and amino acids that showed chemotactic responses towards microbial communities and mediate significant roles in root colonization. The rhizospheric microbiome is a crucial driver of plant growth and productivity, contributing directly or indirectly by facilitating nutrient acquisition, phytohormone modulation, and phosphate solubilization under normal and stressful conditions. Moreover, these microbial candidates protect plants from pathogen invasion by secreting antimicrobial and volatile organic compounds. To enhance plant fitness and yield, rhizospheric microbes are frequently employed as microbial inoculants. However, recent developments have shifted towards targeted rhizosphere engineering or microbial recruitments as a practical approach to constructing desired plant rhizospheres for specific outcomes. The rhizosphere, composed of plants, microbes, and soil, can be modified in several ways to improve inoculant efficiency. Rhizosphere engineering is achieved through three essential mechanisms: a) plant-mediated modifications involving genetic engineering, transgenics, and gene editing of plants; b) microbe-mediated modifications involving genetic alterations of microbes through upstream or downstream methodologies; and c) soil amendments. These mechanisms shape the rhizospheric microbiome, making plants more productive and resilient under different stress conditions. This review paper comprehensively summarizes the various aspects of rhizosphere engineering and their potential applications in maintaining plant health and achieving optimum agricultural productivity.
Assuntos
Raízes de Plantas , Rizosfera , Agricultura/métodos , Plantas , Solo/química , Microbiologia do SoloRESUMO
Saline soils pose significant challenges to global agricultural productivity, hindering crop growth and efficiency. Despite various mitigation strategies, the issue persists, underscoring the need for innovative and sustainable solutions. One promising approach involves leveraging microorganisms and their plant interactions to reclaim saline soils and bolster crop yields. This review highlights pioneering and recent advancements in utilizing multi-traits Trichoderma and Bacillus species as potent promoters of plant growth and health. It examines the multifaceted impacts of saline stress on plants and microbes, elucidating their physiological and molecular responses. Additionally, it delves into the role of ACC deaminase in mitigating plant ethylene levels by Trichoderma and Bacillus species. Although there are several studies on Trichoderma-Bacillus, much remains to be understood about their synergistic relationships and their potential as auxiliaries in the phytoremediation of saline soils, which is why this work addresses these challenges.
RESUMO
Soil salinity is one of the most important abiotic factors that affects agricultural production worldwide. Because of saline stress, plants face physiological changes that have negative impacts on the various stages of their development, so the employment of plant growth-promoting bacteria (PGPB) is one effective means to reduce such toxic effects. Bacteria of the Bacillus genus are excellent PGPB and have been extensively studied, but what traits makes them so extraordinary to adapt and survive under harsh situations? In this work we review the Bacillus' innate abilities to survive in saline stressful soils, such as the production osmoprotectant compounds, antioxidant enzymes, exopolysaccharides, and the modification of their membrane lipids. Other survival abilities are also discussed, such as sporulation or a reduced growth state under the scope of a functional interaction in the rhizosphere. Thus, the most recent evidence shows that these saline adaptive activities are important in plant-associated bacteria to potentially protect, direct and indirect plant growth-stimulating activities. Additionally, recent advances on the mechanisms used by Bacillus spp. to improve the growth of plants under saline stress are addressed, including genomic and transcriptomic explorations. Finally, characterization and selection of Bacillus strains with efficient survival strategies are key factors in ameliorating saline problems in agricultural production.
Assuntos
Bacillus , Bacillus/fisiologia , Solo , Raízes de Plantas/microbiologia , Bactérias/genética , AntioxidantesRESUMO
Availability of raw materials in the chemical industry is related to the selection of the chemical processes in which they are used as well as to the efficiency, cost, and eventual evolution to more competitive dynamics of transformation technologies. In general terms however, any chemically transforming technology starts with the extraction, purification, design, manufacture, use, and disposal of materials. It is important to create a new paradigm towards green chemistry, sustainability, and circular economy in the chemical sciences that help to better employ, reuse, and recycle the materials used in every aspect of modern life. Electrochemistry is a growing field of knowledge that can help with these issues to reduce solid waste and the impact of chemical processes on the environment. Several electrochemical studies in the last decades have benefited the recovery of important chemical compounds and elements through electrodeposition, electrowinning, electrocoagulation, electrodialysis, and other processes. The use of living organisms and microorganisms using an electrochemical perspective (known as bioelectrochemistry), is also calling attention to "mining", through plants and microorganisms, essential chemical elements. New process design or the optimization of the current technologies is a major necessity to enhance production and minimize the use of raw materials along with less generation of wastes and secondary by-products. In this context, this contribution aims to show an up-to-date scenario of both environmental electrochemical and bioelectrochemical processes for the extraction, use, recovery and recycling of materials in a circular economy model.