Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 32(1): 229-237, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093193

RESUMO

BACKGROUND: The precise origin of phosphate that is removed during hemodialysis remains unclear; only a minority comes from the extracellular space. One possibility is that the remaining phosphate originates from the intracellular compartment, but there have been no available data from direct assessment of intracellular phosphate in patients undergoing hemodialysis. METHODS: We used phosphorus magnetic resonance spectroscopy to quantify intracellular inorganic phosphate (Pi), phosphocreatine (PCr), and ßATP. In our pilot, single-center, prospective study, 11 patients with ESKD underwent phosphorus (31P) magnetic resonance spectroscopy examination during a 4-hour hemodialysis treatment. Spectra were acquired every 152 seconds during the hemodialysis session. The primary outcome was a change in the PCr-Pi ratio during the session. RESULTS: During the first hour of hemodialysis, mean phosphatemia decreased significantly (-41%; P<0.001); thereafter, it decreased more slowly until the end of the session. We found a significant increase in the PCr-Pi ratio (+23%; P=0.001) during dialysis, indicating a reduction in intracellular Pi concentration. The PCr-ßATP ratio increased significantly (+31%; P=0.001) over a similar time period, indicating a reduction in ßATP. The change of the PCr-ßATP ratio was significantly correlated to the change of depurated Pi. CONCLUSIONS: Phosphorus magnetic resonance spectroscopy examination of patients with ESKD during hemodialysis treatment confirmed that depurated Pi originates from the intracellular compartment. This finding raises the possibility that excessive dialytic depuration of phosphate might adversely affect the intracellular availability of high-energy phosphates and ultimately, cellular metabolism. Further studies are needed to investigate the relationship between objective and subjective effects of hemodialysis and decreases of intracellular Pi and ßATP content. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Intracellular Phosphate Concentration Evolution During Hemodialysis by MR Spectroscopy (CIPHEMO), NCT03119818.


Assuntos
Trifosfato de Adenosina/metabolismo , Fosfatos/metabolismo , Diálise Renal , Acidose/metabolismo , Adulto , Idoso , Cálcio/metabolismo , Metabolismo Energético , Feminino , Hemodinâmica , Humanos , Concentração de Íons de Hidrogênio , Falência Renal Crônica/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fosfocreatina/metabolismo , Fósforo , Isótopos de Fósforo , Projetos Piloto , Estudos Prospectivos
2.
Eur Neurol ; 79(5-6): 240-246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29672312

RESUMO

BACKGROUND: Brain atrophy has shown a protective effect on the risk of early neurological deterioration (END) related to malignant edema in patients with hemispheric infarction but could be deleterious on the outcome. AIMS: We aimed to assess whether brain atrophy has an impact on the risk of END and on the outcome in severe ischemic strokes after intravenous (IV) thrombolysis. METHODS: From a prospective thrombolysis registry, 137 patients who had a National Institutes of Health Stroke Scale (NIHSS) ≥15, MRI at admission, and IV thrombolysis were included. Relative cerebral volume was calculated. END was defined as a ≥2-points deterioration 72-h NIHSS and a good outcome as a modified Rankin Scale (mRS) ≤2 at 3 months. A multiple logistic regression analysis with a stepwise backward procedure was performed. RESULTS: END and a good outcome were observed, respectively, in 20 (14.6%) and 48 (37.5%) patients. In univariate analysis, predictors of END included age (p = 0.049), diabetes (p = 0.041), and parenchymal hemorrhage (p = 0.039). In multivariate analysis, age (p = 0.018) was significantly associated with END. Brain atrophy was not associated with END even in subgroup analysis according to the baseline infarct size. In univariate analysis, age (p = 0.003), prestroke mRS (p = 0.002), hypertension (p = 0.006), baseline NIHSS (p = 0.002), END (p = 0.002), proximal occlusion (p = 0.006), and recanalization at 24 h (p < 0.001) were associated with a good outcome. Only baseline NIHSS (p = 0.006) was associated with a good outcome after adjustment. CONCLUSIONS: We did not find any impact of brain atrophy on the risk of END and the outcome at 3 months in severe ischemic strokes after IV thrombolysis.


Assuntos
Atrofia/patologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Terapia Trombolítica/métodos , Administração Intravenosa , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
3.
J Neuroradiol ; 45(2): 108-113, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29032126

RESUMO

OBJECT: Pathophysiological mechanisms underlying multiple sclerosis (MS) lesion formation, including inflammation, demyelination/remyelination and axonal damage, and their temporal evolution are still not clearly understood. To this end, three acute white matter lesions were monitored using a weekly multimodal magnetic resonance (MR) protocol. MATERIALS AND METHODS: Three untreated patients with early relapsing-remitting MS and one healthy control subject were followed weekly for two months. MR protocol included conventional MR imaging (MRI), diffusion tensor imaging (DTI), and localized MR spectroscopy (MRS), performed on the largest gadolinium-enhancing lesion, selected at the first exam. RESULTS: Mean diffusivity increased and fractional anisotropy decreased in lesions compared to healthy control. Cho/Cr ratios remained elevated in lesions throughout the follow-up. In contrast, temporal profiles of mI/Cr ratios varied between patients' lesions. For patient 1, mI/Cr ratios were already elevated at the beginning of the follow-up. Patients 2 and 3 ratios increase was delayed by two and five weeks. Blood-brain barrier (BBB) recovery occurred after three weeks. CONCLUSION: This multimodal MR follow-up highlighted the complementary role of DTI and MRS in identifying temporal relationships between BBB disruption, inflammation, and demyelination. Diffusion metrics showed high sensitivity to detect inflammatory processes. The different temporal profiles of mI suggested a potential better specificity to monitor pathological mechanisms occurring after lesion formation, such as glial proliferation and remyelination.


Assuntos
Imagem de Tensor de Difusão , Espectroscopia de Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Adulto , Anisotropia , Química Encefálica , Meios de Contraste , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Compostos Organometálicos , Razão Sinal-Ruído
4.
J Am Soc Nephrol ; 27(7): 2062-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26561642

RESUMO

Of the 600-700 mg inorganic phosphate (Pi) removed during a 4-hour hemodialysis session, a maximum of 10% may be extracted from the extracellular space. The origin of the other 90% of removed phosphate is unknown. This study tested the hypothesis that the main source of phosphate removed during hemodialysis is the intracellular compartment. Six binephrectomized pigs each underwent one 3-hour hemodialysis session, during which the extracorporeal circulation blood flow was maintained between 100 and 150 ml/min. To determine in vivo phosphate metabolism, we performed phosphorous ((31)P) magnetic resonance spectroscopy using a 1.5-Tesla system and a surface coil placed over the gluteal muscle region. (31)P magnetic resonance spectra (repetition time =10 s; echo time =0.35 ms) were acquired every 160 seconds before, during, and after dialysis. During the dialysis sessions, plasma phosphate concentrations decreased rapidly (-30.4 %; P=0.003) and then, plateaued before increasing approximately 30 minutes before the end of the sessions; 16 mmol phosphate was removed in each session. When extracellular phosphate levels plateaued, intracellular Pi content increased significantly (11%; P<0.001). Moreover, ßATP decreased significantly (P<0.001); however, calcium levels remained balanced. Results of this study show that intracellular Pi is the source of Pi removed during dialysis. The intracellular Pi increase may reflect cellular stress induced by hemodialysis and/or strong intracellular phosphate regulation.


Assuntos
Espaço Intracelular/metabolismo , Espectroscopia de Ressonância Magnética , Músculo Esquelético/metabolismo , Fosfatos/metabolismo , Diálise Renal , Animais , Feminino , Suínos
5.
Mult Scler ; 22(6): 761-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26362901

RESUMO

BACKGROUND: Several magnetic resonance imaging (MRI) studies investigated the evolution of multiple sclerosis (MS) lesions to understand the pathophysiological mechanisms leading to blood-brain barrier breakdown and lesion formation. Only a few assessed the early natural history of MS lesions using short-interval longitudinal MRI. OBJECTIVE: The purpose of this study was to characterize MS lesion occurrence and early evolution on high-resolution MRI acquired at weekly intervals. METHODS: Active lesions were characterized on 3D fluid attenuation inversion recovery (FLAIR) and gadolinium-enhanced 3D T1-weighted MRI performed weekly (seven weeks) on five untreated patients with relapsing-remitting MS (RRMS). RESULTS: Active lesions (n=212) were detected in all patients. All showed contrast-enhancement on at least one time-point. Most new lesions (83.5%) were visible on FLAIR and post-contrast T1-weighted images at first detection; 11.2% showed activity on FLAIR images, one or more weeks before the appearance of contrast-enhancement; 12.5% enhanced before being apparent on FLAIR. CONCLUSION: Blood brain barrier disruption is a constant step in the natural history of active MS lesions, but does not always constitute the initial event. These findings are consistent with the existence of a subpopulation of lesions with an 'inside-out' genesis, where neurodegenerative processes might precede microglial activation, and a subsequent adaptive immune response.


Assuntos
Progressão da Doença , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Adulto , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
6.
J Neurosci ; 33(9): 4128-39, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447621

RESUMO

The parietal cortex is highly multimodal and plays a key role in the processing of objects and actions in space, both in human and nonhuman primates. Despite the accumulated knowledge in both species, we lack the following: (1) a general description of the multisensory convergence in this cortical region to situate sparser lesion and electrophysiological recording studies; and (2) a way to compare and extrapolate monkey data to human results. Here, we use functional magnetic resonance imaging (fMRI) in the monkey to provide a bridge between human and monkey studies. We focus on the intraparietal sulcus (IPS) and specifically probe its involvement in the processing of visual, tactile, and auditory moving stimuli around and toward the face. We describe three major findings: (1) the visual and tactile modalities are strongly represented and activate mostly nonoverlapping sectors within the IPS. The visual domain occupies its posterior two-thirds and the tactile modality its anterior one-third. The auditory modality is much less represented, mostly on the medial IPS bank. (2) Processing of the movement component of sensory stimuli is specific to the fundus of the IPS and coincides with the anatomical definition of monkey ventral intraparietal area (VIP). (3) A cortical sector within VIP processes movement around and toward the face independently of the sensory modality. This amodal representation of movement may be a key component in the construction of peripersonal space. Overall, our observations highlight strong homologies between macaque and human VIP organization.


Assuntos
Vias Aferentes/fisiologia , Mapeamento Encefálico , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Estimulação Acústica , Vias Aferentes/irrigação sanguínea , Análise de Variância , Animais , Feminino , Lateralidade Funcional , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Movimento , Rede Nervosa/irrigação sanguínea , Oxigênio/sangue , Lobo Parietal/irrigação sanguínea , Estimulação Luminosa , Tempo de Reação , Tato/fisiologia
7.
Brain Connect ; 14(5): 284-293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848246

RESUMO

Introduction: This study aims to use diffusion tensor imaging (DTI) in conjunction with brain graph techniques to define brain structural connectivity and investigate its association with personal income (PI) in individuals of various ages and intelligence quotients (IQ). Methods: MRI examinations were performed on 55 male subjects (mean age: 40.1 ± 9.4 years). Graph data and metrics were generated, and DTI images were analyzed using tract-based spatial statistics (TBSS). All subjects underwent the Wechsler Adult Intelligence Scale for a reliable estimation of the full-scale IQ (FSIQ), which includes verbal comprehension index, perceptual reasoning index, working memory index, and processing speed index. The performance score was defined as the monthly PI normalized by the age of the subject. Results: The analysis of global graph metrics showed that modularity correlated positively with performance score (p = 0.003) and negatively with FSIQ (p = 0.04) and processing speed index (p = 0.005). No significant correlations were found between IQ indices and performance scores. Regional analysis of graph metrics showed modularity differences between right and left networks in sub-cortical (p = 0.001) and frontal (p = 0.044) networks. TBSS analysis showed greater axial and mean diffusivities in the high-performance group in correlation with their modular brain organization. Conclusion: This study showed that PI performance is strongly correlated with a modular organization of brain structural connectivity, which implies short and rapid networks, providing automatic and unconscious brain processing. Additionally, the lack of correlation between performance and IQ suggests a reduced role of academic reasoning skills in performance to the advantage of high uncertainty decision-making networks.


Assuntos
Encéfalo , Imagem de Tensor de Difusão , Renda , Inteligência , Humanos , Masculino , Adulto , Inteligência/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Testes de Inteligência , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Mapeamento Encefálico/métodos , Vias Neurais/diagnóstico por imagem , Escalas de Wechsler
8.
Front Neurosci ; 17: 1268860, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304076

RESUMO

Multiple Sclerosis (MS) is an autoimmune disease that combines chronic inflammatory and neurodegenerative processes underlying different clinical forms of evolution, such as relapsing-remitting, secondary progressive, or primary progressive MS. This identification is usually performed by clinical evaluation at the diagnosis or during the course of the disease for the secondary progressive phase. In parallel, magnetic resonance imaging (MRI) analysis is a mandatory diagnostic complement. Identifying the clinical form from MR images is therefore a helpful and challenging task. Here, we propose a new approach for the automatic classification of MS forms based on conventional MRI (i.e., T1-weighted images) that are commonly used in clinical context. For this purpose, we investigated the morphological connectome features using graph based convolutional neural network. Our results obtained from the longitudinal study of 91 MS patients highlight the performance (F1-score) of this approach that is better than state-of-the-art as 3D convolutional neural networks. These results open the way for clinical applications such as disability correlation only using T1-weighted images.

9.
Med Image Anal ; 84: 102706, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36516557

RESUMO

Convolutional Neural Networks (CNNs) with U-shaped architectures have dominated medical image segmentation, which is crucial for various clinical purposes. However, the inherent locality of convolution makes CNNs fail to fully exploit global context, essential for better recognition of some structures, e.g., brain lesions. Transformers have recently proven promising performance on vision tasks, including semantic segmentation, mainly due to their capability of modeling long-range dependencies. Nevertheless, the quadratic complexity of attention makes existing Transformer-based models use self-attention layers only after somehow reducing the image resolution, which limits the ability to capture global contexts present at higher resolutions. Therefore, this work introduces a family of models, dubbed Factorizer, which leverages the power of low-rank matrix factorization for constructing an end-to-end segmentation model. Specifically, we propose a linearly scalable approach to context modeling, formulating Nonnegative Matrix Factorization (NMF) as a differentiable layer integrated into a U-shaped architecture. The shifted window technique is also utilized in combination with NMF to effectively aggregate local information. Factorizers compete favorably with CNNs and Transformers in terms of accuracy, scalability, and interpretability, achieving state-of-the-art results on the BraTS dataset for brain tumor segmentation and ISLES'22 dataset for stroke lesion segmentation. Highly meaningful NMF components give an additional interpretability advantage to Factorizers over CNNs and Transformers. Moreover, our ablation studies reveal a distinctive feature of Factorizers that enables a significant speed-up in inference for a trained Factorizer without any extra steps and without sacrificing much accuracy. The code and models are publicly available at https://github.com/pashtari/factorizer.


Assuntos
Neoplasias Encefálicas , Acidente Vascular Cerebral , Humanos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Redes Neurais de Computação , Semântica , Processamento de Imagem Assistida por Computador
10.
Front Neurosci ; 16: 975862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389254

RESUMO

Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with pre-activation residual blocks, for the segmentation and detection of new MS lesions. Due to the limited training set and the class imbalance problem, we apply intensive data augmentation and use deep supervision to train our models effectively. Following the same U-shaped architecture but different blocks, Pre-U-Net outperforms U-Net and Res-U-Net on the MSSEG-2 dataset, achieving a Dice score of 40.3% on new lesion segmentation and an F1 score of 48.1% on new lesion detection. The codes and trained models are publicly available at https://github.com/pashtari/xunet.

11.
Brain Connect ; 12(5): 476-488, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34269618

RESUMO

Background: Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by demyelination and neurodegeneration processes. It leads to different clinical courses and degrees of disability that need to be anticipated by the neurologist for personalized therapy. Recently, machine learning (ML) techniques have reached a high level of performance in brain disease diagnosis and/or prognosis, but the decision process of a trained ML system is typically nontransparent. Using brain structural connectivity data, a fully automatic ensemble learning model, augmented with an interpretable model, is proposed for the estimation of MS patients' disability, measured by the Expanded Disability Status Scale (EDSS). Materials and Methods: An ensemble of four boosting-based models (GBM, XGBoost, CatBoost, and LightBoost) organized following a stacking generalization scheme was developed using diffusion tensor imaging (DTI)-based structural connectivity data. In addition, an interpretable model based on conditional logistic regression was developed to explain the best performances in terms of white matter (WM) links for three classes of EDSS (low, medium, and high). Results: The ensemble model reached excellent level of performance (root mean squared error of 0.92 ± 0.28) compared with single-based models and provided a better EDSS estimation using DTI-based structural connectivity data compared with conventional magnetic resonance imaging measures associated with patient data (age, gender, and disease duration). Used for interpretation of the estimation process, the counterfactual method showed the importance of certain brain networks, corresponding mainly to left hemisphere WM links, connecting the left superior temporal with the left posterior cingulate and the right precuneus gray matter regions, and the interhemispheric WM links constituting the corpus callosum. Also, a better accuracy estimation was found for the high disability class. Conclusion: The combination of advanced ML models and sensitive techniques such as DTI-based structural connectivity demonstrated to be useful for the estimation of MS patients' disability and to point out the most important brain WM networks involved in disability. Impact statement An ensemble of "boosting" machine learning (ML) models was more performant than single models to estimate disability in multiple sclerosis. Diffusion tensor imaging (DTI)-based structural connectivity led to better performance than conventional magnetic resonance imaging. An interpretable model, based on counterfactual perturbation, highlighted the most relevant white matter fiber links for disability estimation. These findings demonstrated the clinical interest of combining DTI, graph modeling, and ML techniques.


Assuntos
Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
12.
J Neuroimaging ; 32(2): 328-336, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34752685

RESUMO

BACKGROUND AND PURPOSE: The aim of this study is to determine whether cerebral white matter (WM) microstructural damage, defined by decreased fractional anisotropy (FA) and increased axial (AD) and radial (RD) diffusivities, could be detected as accurately by measuring the T1/T2 ratio, in relapsing-remitting multiple sclerosis (RRMS) patients compared to healthy control (HC) subjects. METHODS: Twenty-eight RRMS patients and 24 HC subjects were included in this study. Region-based analysis based on the ICBM-81 diffusion tensor imaging (DTI) atlas WM labels was performed to compare T1/T2 ratio to DTI values in normal-appearing WM (NAWM) regions of interest. Lesions segmentation was also performed and compared to the HC global WM. RESULTS: A significant 19.65% decrease of T1/T2 ratio values was observed in NAWM regions of RRMS patients compared to HC. A significant 6.30% decrease of FA, as well as significant 4.76% and 10.27% increases of AD and RD, respectively, were observed in RRMS compared to the HC group in various NAWM regions. Compared to the global WM HC mask, lesions have significantly decreased T1/T2 ratio and FA and increased AD and RD (p < . 001). CONCLUSIONS: Results showed significant differences between RRMS and HC in both DTI and T1/T2 ratio measurements. T1/T2 ratio even demonstrated extensive WM abnormalities when compared to DTI, thereby highlighting the ratio's sensitivity to subtle differences in cerebral WM structural integrity using only conventional MRI sequences.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
13.
Clin Neuroradiol ; 32(3): 677-685, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33630120

RESUMO

PURPOSE: Several studies reported gadolinium deposition in the dentate nuclei (DN) and the globus pallidus (GP) that was associated to linear GBCA administrations rather than macrocyclic. It is therefore imperative to evaluate and assess the safety of cumulative administration of gadoterate meglumine (macrocyclic). Thus, T1-weighted images (T1WI) of multiple sclerosis (MS) patients longitudinally followed for 4 years were retrospectively analyzed. METHODS: In this study 44 patients, 10 with clinically isolated syndrome (CIS), 24 relapsing-remitting MS (RRMS) and 10 primary-progressive MS (PPMS) were examined every 6 months (first four scans) and then with a 1-year interval (last two scans). Image processing consisted in reorienting unenhanced T1WI to standard space, followed by B1 inhomogeneity correction. A patient-specific template was then generated to normalize T1WI signal intensity (SI) and segment the DN and subcortical GM structures. All structures were then transformed to each patient space in order to measure the SI in each region. The cerebellar peduncles (CP) and semi-oval (SO) white matter were then manually delineated and used as reference to calculate SI ratios in the DN and subcortical GM structures. A linear mixed-effect model was finally applied to longitudinally analyze SI variations. RESULTS: The SI measurements performed in all structures showed no significant increases with the cumulative GBCA administration. CONCLUSION: This study showed no significant SI increases within the DN and subcortical GM structures of longitudinally followed MS patients even with the cumulative administration of the macrocyclic GBCA gadoterate meglumine.


Assuntos
Esclerose Múltipla , Compostos Organometálicos , Núcleos Cerebelares , Meios de Contraste , Gadolínio DTPA , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Meglumina , Estudos Retrospectivos
14.
Front Robot AI ; 9: 926255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313252

RESUMO

Purpose: The main goal of this study is to investigate the discrimination power of Grey Matter (GM) thickness connectome data between Multiple Sclerosis (MS) clinical profiles using statistical and Machine Learning (ML) methods. Materials and Methods: A dataset composed of 90 MS patients acquired at the MS clinic of Lyon Neurological Hospital was used for the analysis. Four MS profiles were considered, corresponding to Clinical Isolated Syndrome (CIS), Relapsing-Remitting MS (RRMS), Secondary Progressive MS (SPMS), and Primary Progressive MS (PPMS). Each patient was classified in one of these profiles by our neurologist and underwent longitudinal MRI examinations including T1-weighted image acquisition at each examination, from which the GM tissue was segmented and the cortical GM thickness measured. Following the GM parcellation using two different atlases (FSAverage and Glasser 2016), the morphological connectome was built and six global metrics (Betweenness Centrality (BC), Assortativity (r), Transitivity (T), Efficiency (E g ), Modularity (Q) and Density (D)) were extracted. Based on their connectivity metrics, MS profiles were first statistically compared and second, classified using four different learning machines (Logistic Regression, Random Forest, Support Vector Machine and AdaBoost), combined in a higher level ensemble model by majority voting. Finally, the impact of the GM spatial resolution on the MS clinical profiles classification was analyzed. Results: Using binary comparisons between the four MS clinical profiles, statistical differences and classification performances higher than 0.7 were observed. Good performances were obtained when comparing the two early clinical forms, RRMS and PPMS (F1 score of 0.86), and the two neurodegenerative profiles, PPMS and SPMS (F1 score of 0.72). When comparing the two atlases, slightly better performances were obtained with the Glasser 2016 atlas, especially between RRMS with PPMS (F1 score of 0.83), compared to the FSAverage atlas (F1 score of 0.69). Also, the thresholding value for graph binarization was investigated suggesting more informative graph properties in the percentile range between 0.6 and 0.8. Conclusion: An automated pipeline was proposed for the classification of MS clinical profiles using six global graph metrics extracted from the GM morphological connectome of MS patients. This work demonstrated that GM morphological connectivity data could provide good classification performances by combining four simple ML models, without the cost of long and complex MR techniques, such as MR diffusion, and/or deep learning architectures.

15.
Front Neurol ; 13: 804528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250813

RESUMO

Most of motor recovery usually occurs within the first 3 months after stroke. Herein is reported a remarkable late recovery of the right upper-limb motor function after a left middle cerebral artery stroke. This recovery happened progressively, from two to 12 years post-stroke onset, and along a proximo-distal gradient, including dissociated finger movements after 5 years. Standardized clinical assessment and quantified analysis of the reach-to-grasp movement were repeated over time to characterize the recovery. Twelve years after stroke onset, diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), and transcranial magnetic stimulation (TMS) analyses of the corticospinal tracts were carried out to investigate the plasticity mechanisms and efferent pathways underlying motor control of the paretic hand. Clinical evaluations and quantified movement analysis argue for a true neurological recovery rather than a compensation mechanism. DTI showed a significant decrease of fractional anisotropy, associated with a severe atrophy, only in the upper part of the left corticospinal tract (CST), suggesting an alteration of the CST at the level of the infarction that is not propagated downstream. The finger opposition movement of the right paretic hand was associated with fMRI activations of a broad network including predominantly the contralateral sensorimotor areas. Motor evoked potentials were normal and the selective stimulation of the right hemisphere did not elicit any response of the ipsilateral upper limb. These findings support the idea that the motor control of the paretic hand is mediated mainly by the contralateral sensorimotor cortex and the corresponding CST, but also by a plasticity of motor-related areas in both hemispheres. To our knowledge, this is the first report of a high quality upper-limb recovery occurring more than 2 years after stroke with a genuine insight of brain plasticity mechanisms.

17.
Comput Methods Programs Biomed ; 206: 106113, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34004501

RESUMO

BACKGROUND AND OBJECTIVE: Machine learning frameworks have demonstrated their potentials in dealing with complex data structures, achieving remarkable results in many areas, including brain imaging. However, a large collection of data is needed to train these models. This is particularly challenging in the biomedical domain since, due to acquisition accessibility, costs and pathology related variability, available datasets are limited and usually imbalanced. To overcome this challenge, generative models can be used to generate new data. METHODS: In this study, a framework based on generative adversarial network is proposed to create synthetic structural brain networks in Multiple Sclerosis (MS). The dataset consists of 29 relapsing-remitting and 19 secondary-progressive MS patients. T1 and diffusion tensor imaging (DTI) acquisitions were used to obtain the structural brain network for each subject. Evaluation of the quality of newly generated brain networks is performed by (i) analysing their structural properties and (ii) studying their impact on classification performance. RESULTS: We demonstrate that advanced generative models could be directly applied to the structural brain networks. We quantitatively and qualitatively show that newly generated data do not present significant differences compared to the real ones. In addition, augmenting the existing dataset with generated samples leads to an improvement of the classification performance (F1score 81%) with respect to the baseline approach (F1score 66%). CONCLUSIONS: Our approach defines a new tool for biomedical application when connectome-based data augmentation is needed, providing a valid alternative to usual image-based data augmentation techniques.


Assuntos
Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Aprendizado de Máquina , Esclerose Múltipla/diagnóstico por imagem , Redes Neurais de Computação
18.
IEEE J Biomed Health Inform ; 24(4): 1137-1148, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31395569

RESUMO

Analysis of complex data is still a challenge in medical image analysis. Due to the heterogeneous information that can be extracted from magnetic resonance imaging (MRI) it can be difficult to fuse such data in a proper way. One interesting case is given by the analysis of diffusion imaging (DI) data. DI techniques give an important variety of information about the status of microstructure in the brain. This is interesting information to use especially in longitudinal setting where the temporal evolution of the pathology is an important added value. In this paper, we propose a new tensor-based framework capable to detect longitudinal changes appearing in DI data in multiple sclerosis (MS) patients. We focus our attention to the analysis of longitudinal changes occurring along different white matter (WM) fiber-bundles. Our main goal is to detect which subset of fibers (within a bundle) and which sections of these fibers contain "pathological" longitudinal changes. The framework consists of three main parts: i) preprocessing of longitudinal diffusion acquisitions and WM fiber-bundles extraction, ii) data tensorization and rank selection, iii) application of a parallelized constrained tensor factorization algorithm to detect longitudinal "pathological" changes. The proposed method was applied on simulated longitudinal variations and on real MS data. High level of accuracy and precision were obtained in the detection of small longitudinal changes along the WM fiber-bundles.


Assuntos
Algoritmos , Encéfalo , Imagem de Tensor de Difusão/métodos , Interpretação de Imagem Assistida por Computador/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Adulto Jovem
19.
Sci Rep ; 10(1): 20722, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244043

RESUMO

The neural substrate of high intelligence performances remains not well understood. Based on diffusion tensor imaging (DTI) which provides microstructural information of white matter fibers, we proposed in this work to investigate the relationship between structural brain connectivity and intelligence quotient (IQ) scores. Fifty-seven children (8-12 y.o.) underwent a MRI examination, including conventional T1-weighted and DTI sequences, and neuropsychological testing using the fourth edition of Wechsler Intelligence Scale for Children (WISC-IV), providing an estimation of the Full-Scale Intelligence Quotient (FSIQ) based on four subscales: verbal comprehension index (VCI), perceptual reasoning index (PRI), working memory index (WMI), and processing speed index (PSI). Correlations between the IQ scores and both graphs and diffusivity metrics were explored. First, we found significant correlations between the increased integrity of WM fiber-bundles and high intelligence scores. Second, the graph theory analysis showed that integration and segregation graph metrics were positively and negatively correlated with WISC-IV scores, respectively. These results were mainly driven by significant correlations between FSIQ, VCI, and PRI and graph metrics in the temporal and parietal lobes. In conclusion, these findings demonstrated that intelligence performances are related to the integrity of WM fiber-bundles as well as the density and homogeneity of WM brain networks.


Assuntos
Inteligência/fisiologia , Substância Branca/fisiologia , Criança , Transtornos Cognitivos/fisiopatologia , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Testes de Inteligência , Masculino , Memória de Curto Prazo/fisiologia , Escalas de Wechsler
20.
Radiology ; 252(2): 401-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19703881

RESUMO

PURPOSE: To evaluate the use of a recently developed fast-clearing ultrasmall superparamagnetic iron oxide (USPIO) for detection of vascular inflammation in atherosclerotic plaque. MATERIALS AND METHODS: The study protocol was approved by the animal experimentation ethics committee. A recently introduced USPIO, P904, and a reference-standard USPIO, ferumoxtran-10, were tested in a rabbit model of induced aortic atherosclerosis. In vivo magnetic resonance (MR) angiography and T2*-weighted plaque MR imaging were performed at baseline and after administration of P904 and ferumoxtran-10 (administered dose for both, 1000 micromol of iron per kilogram of body weight) in 26 hyperlipidemic New Zealand white rabbits. The variation in vessel wall area over time was evaluated with nonparametric testing. Ex vivo MR imaging findings were compared with iron content at linear regression analysis. RESULTS: With in vivo MR imaging, plaque analysis was possible as early as 24 hours after P904 injection. The authors observed a 27.75% increase in vessel wall area due to susceptibility artifacts on day 2 (P = .04) and a 38.81% increase on day 3 (P = .04) after P904 administration compared with a 44.5% increase in vessel wall area on day 7 (P = .04) and a 34.8% increase on day 10 (P = .22) after ferumoxtran-10 administration. These susceptibility artifacts were correlated with intraplaque iron uptake in the corresponding histologic slices. The number of pixels with signal loss on the ex vivo MR images was linearly correlated with the logarithm of the iron concentration (P = .0001; R(2) = 0.93). CONCLUSION: Plaque inflammation in rabbits can be detected earlier with P904 than with ferumoxtran-10 owing to the faster blood pharmacokinetics and the early uptake of P904 in the reticuloendothelial system. SUPPLEMENTAL MATERIAL: http://radiology.rsnajnls.org/cgi/content/full/252/2/401/DC1.


Assuntos
Aortite/metabolismo , Aortite/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Ferro/farmacocinética , Angiografia por Ressonância Magnética/métodos , Óxidos/farmacocinética , Animais , Meios de Contraste/farmacocinética , Dextranos , Modelos Animais de Doenças , Óxido Ferroso-Férrico , Humanos , Nanopartículas de Magnetita , Taxa de Depuração Metabólica , Projetos Piloto , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA