Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(15): 2653-2672.e15, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506698

RESUMO

Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Sítios de Splice de RNA/genética , Íntrons/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
2.
Mol Cell ; 82(3): 555-569.e7, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063133

RESUMO

In the eukaryotic cytosol, the Hsp70 and the Hsp90 chaperone machines work in tandem with the maturation of a diverse array of client proteins. The transfer of nonnative clients between these systems is essential to the chaperoning process, but how it is regulated is still not clear. We discovered that NudC is an essential transfer factor with an unprecedented mode of action: NudC interacts with Hsp40 in Hsp40-Hsp70-client complexes and displaces Hsp70. Then, the interaction of NudC with Hsp90 allows the direct transfer of Hsp40-bound clients to Hsp90 for further processing. Consistent with this mechanism, NudC increases client activation in vitro as well as in cells and is essential for cellular viability. Together, our results show the complexity of the cooperation between the major chaperone machineries in the eukaryotic cytosol.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Nucleares/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Sobrevivência Celular , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Células K562 , Cinética , Simulação de Acoplamento Molecular , Proteínas Nucleares/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Nature ; 619(7969): 371-377, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380771

RESUMO

Ferroptosis is evolving as a highly promising approach to combat difficult-to-treat tumour entities including therapy-refractory and dedifferentiating cancers1-3. Recently, ferroptosis suppressor protein-1 (FSP1), along with extramitochondrial ubiquinone or exogenous vitamin K and NAD(P)H/H+ as an electron donor, has been identified as the second ferroptosis-suppressing system, which efficiently prevents lipid peroxidation independently of the cyst(e)ine-glutathione (GSH)-glutathione peroxidase 4 (GPX4) axis4-6. To develop FSP1 inhibitors as next-generation therapeutic ferroptosis inducers, here we performed a small molecule library screen and identified the compound class of 3-phenylquinazolinones (represented by icFSP1) as potent FSP1 inhibitors. We show that icFSP1, unlike iFSP1, the first described on-target FSP1 inhibitor5, does not competitively inhibit FSP1 enzyme activity, but instead triggers subcellular relocalization of FSP1 from the membrane and FSP1 condensation before ferroptosis induction, in synergism with GPX4 inhibition. icFSP1-induced FSP1 condensates show droplet-like properties consistent with phase separation, an emerging and widespread mechanism to modulate biological activity7. N-terminal myristoylation, distinct amino acid residues and intrinsically disordered, low-complexity regions in FSP1 were identified to be essential for FSP1-dependent phase separation in cells and in vitro. We further demonstrate that icFSP1 impairs tumour growth and induces FSP1 condensates in tumours in vivo. Hence, our results suggest that icFSP1 exhibits a unique mechanism of action and synergizes with ferroptosis-inducing agents to potentiate the ferroptotic cell death response, thus providing a rationale for targeting FSP1-dependent phase separation as an efficient anti-cancer therapy.


Assuntos
Proteínas Reguladoras de Apoptose , Ferroptose , Proteínas Mitocondriais , Humanos , Aminoácidos/metabolismo , Cisteína/metabolismo , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , NAD/metabolismo , NADP/metabolismo , Neoplasias/tratamento farmacológico , Quinazolinas/farmacologia , Bibliotecas de Moléculas Pequenas , Ubiquinona/metabolismo , Vitamina K/metabolismo , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo
4.
Mol Cell ; 80(1): 102-113.e6, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853547

RESUMO

Repair of covalent DNA-protein crosslinks (DPCs) by DNA-dependent proteases has emerged as an essential genome maintenance mechanism required for cellular viability and tumor suppression. However, how proteolysis is restricted to the crosslinked protein while leaving surrounding chromatin proteins unharmed has remained unknown. Using defined DPC model substrates, we show that the DPC protease SPRTN displays strict DNA structure-specific activity. Strikingly, SPRTN cleaves DPCs at or in direct proximity to disruptions within double-stranded DNA. In contrast, proteins crosslinked to intact double- or single-stranded DNA are not cleaved by SPRTN. NMR spectroscopy data suggest that specificity is not merely affinity-driven but achieved through a flexible bipartite strategy based on two DNA binding interfaces recognizing distinct structural features. This couples DNA context to activation of the enzyme, tightly confining SPRTN's action to biologically relevant scenarios.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/química , Linhagem Celular , Proteínas de Ligação a DNA/química , Humanos , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Domínios Proteicos , Relação Estrutura-Atividade
5.
Plant Cell ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723165

RESUMO

Arabidopsis (Arabidopsis thaliana) plants can produce photosynthetic tissue with active chloroplasts at temperatures as low as 4°C, and this process depends on the presence of the nuclear-encoded, chloroplast-localized RNA-binding protein CP29A. In this study, we demonstrate that CP29A undergoes phase separation in vitro and in vivo in a temperature-dependent manner, which is mediated by a prion-like domain (PLD) located between the two RNA recognition motif (RRM) domains of CP29A. The resulting droplets display liquid-like properties and are found near chloroplast nucleoids. The PLD is required to support chloroplast RNA splicing and translation in cold-treated tissue. Together, our findings suggest that plant chloroplast gene expression is compartmentalized by inducible condensation of CP29A at low temperatures, a mechanism that could play a crucial role in plant cold resistance.

6.
Mol Cell ; 74(1): 73-87.e8, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876805

RESUMO

The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Elongação Traducional da Cadeia Peptídica , Fator 2 de Elongação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ressonância Magnética Nuclear Biomolecular , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
7.
Nat Methods ; 20(4): 523-535, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973549

RESUMO

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Transferência Ressonante de Energia de Fluorescência/métodos , Reprodutibilidade dos Testes , Proteínas/química , Conformação Molecular , Laboratórios
8.
Nucleic Acids Res ; 52(11): 6441-6458, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499483

RESUMO

Coronaviruses modify their single-stranded RNA genome with a methylated cap during replication to mimic the eukaryotic mRNAs. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16, while nsp10 acts as a co-factor to both. Additionally, nsp14 carries an exonuclease domain which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins would be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex upon significant allosteric change. This interaction is expected to encourage the formation of mature capped viral mRNA, modulating nsp14's exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.


Assuntos
Metiltransferases , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Metiltransferases/metabolismo , Metiltransferases/genética , Metiltransferases/química , Metilação , RNA Viral/metabolismo , RNA Viral/química , RNA Viral/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , Humanos , Ligação Proteica , Capuzes de RNA/metabolismo , Capuzes de RNA/genética , Regulação Alostérica , COVID-19/virologia , COVID-19/genética , Multimerização Proteica , Replicação Viral/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/química , Proteínas Virais Reguladoras e Acessórias
9.
Plant J ; 118(1): 203-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38124335

RESUMO

The importance of RNA-binding proteins (RBPs) for plant responses to environmental stimuli and development is well documented. Insights into the portfolio of RNAs they recognize, however, clearly lack behind the understanding gathered in non-plant model organisms. Here, we characterize binding of the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) to its target transcripts. We identified novel RNA targets from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) data using an improved bioinformatics pipeline that will be broadly applicable to plant RBP iCLIP data. 2705 transcripts with binding sites were identified in plants expressing AtGRP7-GFP that were not recovered in plants expressing an RNA-binding dead variant or GFP alone. A conserved RNA motif enriched in uridine residues was identified at the AtGRP7 binding sites. NMR titrations confirmed the preference of AtGRP7 for RNAs with a central U-rich motif. Among the bound RNAs, circadian clock-regulated transcripts were overrepresented. Peak abundance of the LHCB1.1 transcript encoding a chlorophyll-binding protein was reduced in plants overexpressing AtGRP7 whereas it was elevated in atgrp7 mutants, indicating that LHCB1.1 was regulated by AtGRP7 in a dose-dependent manner. In plants overexpressing AtGRP7, the LHCB1.1 half-life was shorter compared to wild-type plants whereas in atgrp7 mutant plants, the half-life was significantly longer. Thus, AtGRP7 modulates circadian oscillations of its in vivo binding target LHCB1.1 by affecting RNA stability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glicina/metabolismo , RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
10.
Nature ; 575(7784): 693-698, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31634899

RESUMO

Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids1,2. To date, ferroptosis has been thought to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4)3,4 and radical-trapping antioxidants5,6. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis7 is crucial to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer. Although metabolic constraints8 and phospholipid composition9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been identified that account for the resistance of cells to ferroptosis. Here we used an expression cloning approach to identify genes in human cancer cells that are able to complement the loss of GPX4. We found that the flavoprotein apoptosis-inducing factor mitochondria-associated 2 (AIFM2) is a previously unrecognized anti-ferroptotic gene. AIFM2, which we renamed ferroptosis suppressor protein 1 (FSP1) and which was initially described as a pro-apoptotic gene11, confers protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that the suppression of ferroptosis by FSP1 is mediated by ubiquinone (also known as coenzyme Q10, CoQ10): the reduced form, ubiquinol, traps lipid peroxyl radicals that mediate lipid peroxidation, whereas FSP1 catalyses the regeneration of CoQ10 using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. In conclusion, the FSP1-CoQ10-NAD(P)H pathway exists as a stand-alone parallel system, which co-operates with GPX4 and glutathione to suppress phospholipid peroxidation and ferroptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Ferroptose/genética , Glutationa/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Peroxidação de Lipídeos/genética , Camundongos , Proteínas Mitocondriais/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
11.
Nucleic Acids Res ; 51(2): 831-851, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36583366

RESUMO

RNA-binding proteins (RBPs) control every RNA metabolic process by multiple protein-RNA and protein-protein interactions. Their roles have largely been analyzed by crude mutations, which abrogate multiple functions at once and likely impact the structural integrity of the large ribonucleoprotein particles (RNPs) these proteins function in. Using UV-induced RNA-protein crosslinking of entire cells, protein complex purification and mass spectrometric analysis, we identified >100 in vivo RNA crosslinks in 16 nuclear mRNP components in Saccharomyces cerevisiae. For functional analysis, we chose Npl3, which displayed crosslinks in its two RNA recognition motifs (RRMs) and in the connecting flexible linker region. Both RRM domains and the linker uniquely contribute to RNA recognition as revealed by NMR and structural analyses. Interestingly, mutations in these regions cause different phenotypes, indicating distinct functions of the different RNA-binding domains. Notably, an npl3-Linker mutation strongly impairs recruitment of several mRNP components to chromatin and incorporation of other mRNP components into nuclear mRNPs, establishing a so far unknown function of Npl3 in nuclear mRNP assembly. Taken together, our integrative analysis uncovers a specific function of the RNA-binding activity of the nuclear mRNP component Npl3. This approach can be readily applied to RBPs in any RNA metabolic process.


Assuntos
Proteínas de Saccharomyces cerevisiae , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
12.
Circ Res ; 130(1): 67-79, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34789007

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are generated by back splicing of mostly mRNAs and are gaining increasing attention as a novel class of regulatory RNAs that control various cellular functions. However, their physiological roles and functional conservation in vivo are rarely addressed, given the inherent challenges of their genetic inactivation. Here, we aimed to identify locus conserved circRNAs in mice and humans, which can be genetically deleted due to retained intronic elements not contained in the mRNA host gene to eventually address functional conservation. METHODS AND RESULTS: Combining published endothelial RNA-sequencing data sets with circRNAs of the circATLAS databank, we identified locus-conserved circRNA retaining intronic elements between mice and humans. CRISPR/Cas9 mediated genetic depletion of the top expressed circRNA cZfp292 resulted in an altered endothelial morphology and aberrant flow alignment in the aorta in vivo. Consistently, depletion of cZNF292 in endothelial cells in vitro abolished laminar flow-induced alterations in cell orientation, paxillin localization and focal adhesion organization. Mechanistically, we identified the protein SDOS (syndesmos) to specifically interact with cZNF292 in endothelial cells by RNA-affinity purification and subsequent mass spectrometry analysis. Silencing of SDOS or its protein binding partner Syndecan-4, or mutation of the SDOS-cZNF292 binding site, prevented laminar flow-induced cytoskeletal reorganization thereby recapitulating cZfp292 knockout phenotypes. CONCLUSIONS: Together, our data reveal a hitherto unknown role of cZNF292/cZfp292 in endothelial flow responses, which influences endothelial shape.


Assuntos
Proteínas de Ligação a DNA , Células Endoteliais , Endotélio Vascular , RNA Circular , Fatores de Transcrição , Animais , Humanos , Camundongos , Circulação Sanguínea , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Circular/genética , RNA Circular/metabolismo , Sindecana-4/metabolismo , Fatores de Transcrição/genética
13.
PLoS Comput Biol ; 19(1): e1010859, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689472

RESUMO

RNA recognition motifs (RRM) are the most prevalent class of RNA binding domains in eucaryotes. Their RNA binding preferences have been investigated for almost two decades, and even though some RRM domains are now very well described, their RNA recognition code has remained elusive. An increasing number of experimental structures of RRM-RNA complexes has become available in recent years. Here, we perform an in-depth computational analysis to derive an RNA recognition code for canonical RRMs. We present and validate a computational scoring method to estimate the binding between an RRM and a single stranded RNA, based on structural data from a carefully curated multiple sequence alignment, which can predict RRM binding RNA sequence motifs based on the RRM protein sequence. Given the importance and prevalence of RRMs in humans and other species, this tool could help design RNA binding motifs with uses in medical or synthetic biology applications, leading towards the de novo design of RRMs with specific RNA recognition.


Assuntos
Motivo de Reconhecimento de RNA , RNA , Humanos , RNA/química , Sequência de Aminoácidos , Alinhamento de Sequência , Motivos de Nucleotídeos/genética , Ligação Proteica , Sítios de Ligação
14.
Nucleic Acids Res ; 50(4): 2350-2362, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35166835

RESUMO

The A-repeat region of the lncRNA Xist is critical for X inactivation and harbors several N6-methyladenosine (m6A) modifications. How the m6A modification affects the conformation of the conserved AUCG tetraloop hairpin of the A-repeats and how it can be recognized by the YTHDC1 reader protein is unknown. Here, we report the NMR solution structure of the (m6A)UCG hairpin, which reveals that the m6A base extends 5' stacking of the A-form helical stem, resembling the unmethylated AUCG tetraloop. A crystal structure of YTHDC1 bound to the (m6A)UCG tetraloop shows that the (m6A)UC nucleotides are recognized by the YTH domain of YTHDC1 in a single-stranded conformation. The m6A base inserts into the aromatic cage and the U and C bases interact with a flanking charged surface region, resembling the recognition of single-stranded m6A RNA ligands. Notably, NMR and fluorescence quenching experiments show that the binding requires local unfolding of the upper stem region of the (m6A)UCG hairpin. Our data show that m6A can be readily accommodated in hairpin loop regions, but recognition by YTH readers requires local unfolding of flanking stem regions. This suggests how m6A modifications may regulate lncRNA function by modulating RNA structure.


Assuntos
Adenosina/análogos & derivados , Fatores de Processamento de RNA , RNA Longo não Codificante , Adenosina/química , Adenosina/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Inativação do Cromossomo X
15.
Nucleic Acids Res ; 50(1): 490-511, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34893887

RESUMO

In infected cells, Epstein-Barr virus (EBV) alternates between latency and lytic replication. The viral bZIP transcription factor ZEBRA (Zta, BZLF1) regulates this cycle by binding to two classes of ZEBRA response elements (ZREs): CpG-free motifs resembling the consensus AP-1 site recognized by cellular bZIP proteins and CpG-containing motifs that are selectively bound by ZEBRA upon cytosine methylation. We report structural and mutational analysis of ZEBRA bound to a CpG-methylated ZRE (meZRE) from a viral lytic promoter. ZEBRA recognizes the CpG methylation marks through a ZEBRA-specific serine and a methylcytosine-arginine-guanine triad resembling that found in canonical methyl-CpG binding proteins. ZEBRA preferentially binds the meZRE over the AP-1 site but mutating the ZEBRA-specific serine to alanine inverts this selectivity and abrogates viral replication. Our findings elucidate a DNA methylation-dependent switch in ZEBRA's transactivation function that enables ZEBRA to bind AP-1 sites and promote viral latency early during infection and subsequently, under appropriate conditions, to trigger EBV lytic replication by binding meZREs.


Assuntos
DNA Viral/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Transativadores/metabolismo , Proteínas Virais/metabolismo , Metilação de DNA , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Ligação Proteica , Replicação Viral
16.
J Biol Chem ; 298(7): 102101, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35667441

RESUMO

The heat shock protein 90 (Hsp90) is a molecular chaperone central to client protein folding and maturation in eukaryotic cells. During its chaperone cycle, Hsp90 undergoes ATPase-coupled large-scale conformational changes between open and closed states, where the N-terminal and middle domains of the protein form a compact dimerized conformation. However, the molecular principles of the switching motion between the open and closed states remain poorly understood. Here we show by integrating atomistic and coarse-grained molecular simulations with small-angle X-ray scattering experiments and NMR spectroscopy data that Hsp90 exhibits rich conformational dynamics modulated by the charged linker, which connects the N-terminal with the middle domain of the protein. We show that the dissociation of these domains is crucial for the conformational flexibility of the open state, with the separation distance controlled by a ß-sheet motif next to the linker region. Taken together, our results suggest that the conformational ensemble of Hsp90 comprises highly extended states, which could be functionally crucial for client processing.


Assuntos
Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Proteínas de Choque Térmico HSP90/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Conformação Proteica , Dobramento de Proteína
17.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530478

RESUMO

Centrosome amplification is a hallmark of human cancers that can trigger cancer cell invasion. To survive, cancer cells cluster amplified extra centrosomes and achieve pseudobipolar division. Here, we set out to prevent clustering of extra centrosomes. Tubulin, by interacting with the centrosomal protein CPAP, negatively regulates CPAP-dependent peri-centriolar material recruitment, and concurrently microtubule nucleation. Screening for compounds that perturb CPAP-tubulin interaction led to the identification of CCB02, which selectively binds at the CPAP binding site of tubulin. Genetic and chemical perturbation of CPAP-tubulin interaction activates extra centrosomes to nucleate enhanced numbers of microtubules prior to mitosis. This causes cells to undergo centrosome de-clustering, prolonged multipolar mitosis, and cell death. 3D-organotypic invasion assays reveal that CCB02 has broad anti-invasive activity in various cancer models, including tyrosine kinase inhibitor (TKI)-resistant EGFR-mutant non-small-cell lung cancers. Thus, we have identified a vulnerability of cancer cells to activation of extra centrosomes, which may serve as a global approach to target various tumors, including drug-resistant cancers exhibiting high incidence of centrosome amplification.


Assuntos
Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Tubulina (Proteína)/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Centrossomo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Camundongos , Neoplasias/metabolismo , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biol Chem ; 404(2-3): 179-194, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36437542

RESUMO

The cycling import receptor PEX5 and its membrane-located binding partner PEX14 are key constituents of the peroxisomal import machinery. Upon recognition of newly synthesized cargo proteins carrying a peroxisomal targeting signal type 1 (PTS1) in the cytosol, the PEX5/cargo complex docks at the peroxisomal membrane by binding to PEX14. The PEX14 N-terminal domain (NTD) recognizes (di)aromatic peptides, mostly corresponding to Wxxx(F/Y)-motifs, with nano-to micromolar affinity. Human PEX5 possesses eight of these conserved motifs distributed within its 320-residue disordered N-terminal region. Here, we combine biophysical (ITC, NMR, CD), biochemical and computational methods to characterize the recognition of these (di)aromatic peptides motifs and identify key features that are recognized by PEX14. Notably, the eight motifs present in human PEX5 exhibit distinct affinities and energetic contributions for the interaction with the PEX14 NTD. Computational docking and analysis of the interactions of the (di)aromatic motifs identify the specific amino acids features that stabilize a helical conformation of the peptide ligands and mediate interactions with PEX14 NTD. We propose a refined consensus motif ExWΦxE(F/Y)Φ for high affinity binding to the PEX14 NTD and discuss conservation of the (di)aromatic peptide recognition by PEX14 in other species.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Humanos , Ligação Proteica , Transporte Proteico , Proteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos/química , Peroxissomos/metabolismo
19.
Nat Chem Biol ; 17(3): 272-279, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33288957

RESUMO

Virtually all aspects of cell biology are regulated by a ubiquitin code where distinct ubiquitin chain architectures guide the binding events and itineraries of modified substrates. Various combinations of E2 and E3 enzymes accomplish chain formation by forging isopeptide bonds between the C terminus of their transiently linked donor ubiquitin and a specific nucleophilic amino acid on the acceptor ubiquitin, yet it is unknown whether the fundamental feature of most acceptors-the lysine side chain-affects catalysis. Here, use of synthetic ubiquitins with non-natural acceptor site replacements reveals that the aliphatic side chain specifying reactive amine geometry is a determinant of the ubiquitin code, through unanticipated and complex reliance of many distinct ubiquitin-carrying enzymes on a canonical acceptor lysine.


Assuntos
Lisina/química , Proteína NEDD8/química , Poliubiquitina/química , Processamento de Proteína Pós-Traducional , Ubiquitina/química , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Lisina/metabolismo , Modelos Moleculares , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
20.
EMBO Rep ; 22(12): e53007, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34605140

RESUMO

While Epstein-Barr virus (EBV) establishes a life-long latent infection in apparently healthy human immunocompetent hosts, immunodeficient individuals are at particular risk to develop lymphoproliferative B-cell malignancies caused by EBV. A key EBV protein is the transcription factor EBV nuclear antigen 2 (EBNA2), which initiates B-cell proliferation. Here, we combine biochemical, cellular, and in vivo experiments demonstrating that the mitotic polo-like kinase 1 (PLK1) binds to EBNA2, phosphorylates its transactivation domain, and thereby inhibits its biological activity. EBNA2 mutants that impair PLK1 binding or prevent EBNA2 phosphorylation are gain-of-function mutants. They exhibit enhanced transactivation capacities, accelerate the proliferation of infected B cells, and promote the development of monoclonal B-cell lymphomas in infected mice. Thus, PLK1 coordinates the activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency in the infected but healthy host.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Animais , Proteínas de Ciclo Celular , Infecções por Vírus Epstein-Barr/complicações , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Latência Viral , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA