Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Electrophoresis ; 39(2): 377-385, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29072777

RESUMO

SDS is commonly employed as BGE additive in CZE analysis of non-enveloped icosahedral viruses. But the way by which SDS interacts with the surface of such viruses remains to date poorly known, making complicate to understand their behavior during a run. In this article, two related bacteriophages, MS2 and Qß, are used as model to investigate the migration mechanism of non-enveloped icosahedral viruses in SDS-based CZE. Both phages are characterized by similar size and surface charge but significantly different surface hydrophobicity (Qß > MS2, where '>' means 'more hydrophobic than'). By comparing their electrophoretic mobility in the presence or not of SDS on both sides of the CMC, we show that surface hydrophobicity of phages is a key factor influencing their mobility and that SDS-virus association is driven by hydrophobic interactions at the surface of virions. The CZE analyses of heated MS2 particles, which over-express hydrophobic domains at their surface, confirm this finding. The correlations between the present results and others from the literature suggest that the proposed mechanism might not be exclusive to the bacteriophages examined here.


Assuntos
Eletroforese Capilar/métodos , Levivirus/química , Levivirus/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Dodecilsulfato de Sódio , Propriedades de Superfície
2.
J Biol Chem ; 291(26): 13864-74, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27189936

RESUMO

Bacterial membranes are highly organized, containing specific microdomains that facilitate distinct protein and lipid assemblies. Evidence suggests that cardiolipin molecules segregate into such microdomains, probably conferring a negative curvature to the inner plasma membrane during membrane fission upon cell division. 3',6-Dinonyl neamine is an amphiphilic aminoglycoside derivative active against Pseudomonas aeruginosa, including strains resistant to colistin. The mechanisms involved at the molecular level were identified using lipid models (large unilamellar vesicles, giant unilamelllar vesicles, and lipid monolayers) that mimic the inner membrane of P. aeruginosa The study demonstrated the interaction of 3',6-dinonyl neamine with cardiolipin and phosphatidylglycerol, two negatively charged lipids from inner bacterial membranes. This interaction induced membrane permeabilization and depolarization. Lateral segregation of cardiolipin and membrane hemifusion would be critical for explaining the effects induced on lipid membranes by amphiphilic aminoglycoside antibiotics. The findings contribute to an improved understanding of how amphiphilic aminoglycoside antibiotics that bind to negatively charged lipids like cardiolipin could be promising antibacterial compounds.


Assuntos
Cardiolipinas/química , Framicetina/química , Fosfatidilgliceróis/química , Pseudomonas aeruginosa/química
3.
Electrophoresis ; 36(20): 2630-3, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26101140

RESUMO

It has been shown that diverse strains of bacteria can be separated according to their characteristic surface properties by means of CE. We employed here this analytical technique to the study of colistin-resistance in Gram-negative bacteria, which involves the selection of mutants with modified outer membrane composition resulting in changes of surface cell properties. In the same way as with molecular entities, we performed firstly the validation of an ITP-based CE method for three common pathogenic Gram-negative bacteria namely Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Secondly, we compared the electrophoretic profiles of bacterial samples from a colistin-susceptible clinical isolate of K. pneumoniae and from the corresponding colistin-resistant derivative. By a simple CE run taking a few minutes, the coexistence of several bacterial subpopulations in the colistin-resistant derivative was clearly evidenced. This work encourages further research that would allow applications of CE in clinical laboratory for a daily monitoring of bacterial population in cared patients when "last-chance" colistin treatment is initiated against multidrug-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana/métodos , Colistina/farmacologia , Farmacorresistência Bacteriana , Eletroforese Capilar/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/química , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
4.
Antimicrob Agents Chemother ; 58(8): 4420-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24867965

RESUMO

The development of novel antimicrobial agents is urgently required to curb the widespread emergence of multidrug-resistant bacteria like colistin-resistant Pseudomonas aeruginosa. We previously synthesized a series of amphiphilic neamine derivatives active against bacterial membranes, among which 3',6-di-O-[(2"-naphthyl)propyl]neamine (3',6-di2NP), 3',6-di-O-[(2"-naphthyl)butyl]neamine (3',6-di2NB), and 3',6-di-O-nonylneamine (3',6-diNn) showed high levels of activity and low levels of cytotoxicity (L. Zimmermann et al., J. Med. Chem. 56:7691-7705, 2013). We have now further characterized the activity of these derivatives against colistin-resistant P. aeruginosa and studied their mode of action; specifically, we characterized their ability to interact with lipopolysaccharide (LPS) and to alter the bacterial outer membrane (OM). The three amphiphilic neamine derivatives were active against clinical colistin-resistant strains (MICs, about 2 to 8 µg/ml), The most active one (3',6-diNn) was bactericidal at its MIC and inhibited biofilm formation at 2-fold its MIC. They cooperatively bound to LPSs, increasing the outer membrane permeability. Grafting long and linear alkyl chains (nonyl) optimized binding to LPS and outer membrane permeabilization. The effects of amphiphilic neamine derivatives on LPS micelles suggest changes in the cross-bridging of lipopolysaccharides and disordering in the hydrophobic core of the micelles. The molecular shape of the 3',6-dialkyl neamine derivatives induced by the nature of the grafted hydrophobic moieties (naphthylalkyl instead of alkyl) and the flexibility of the hydrophobic moiety are critical for their fluidifying effect and their ability to displace cations bridging LPS. Results from this work could be exploited for the development of new amphiphilic neamine derivatives active against colistin-resistant P. aeruginosa.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Framicetina/farmacologia , Lipopolissacarídeos/química , Naftalenos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Aminoglicosídeos/síntese química , Antibacterianos/síntese química , Sítios de Ligação , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Framicetina/síntese química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Naftalenos/síntese química , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Relação Estrutura-Atividade
5.
Virology ; 585: 139-144, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343460

RESUMO

The surface hydrophobicity of native or engineered non-enveloped viruses and virus-like particles (VLPs) is a key parameter regulating their fate in living and artificial aqueous systems. Its modulation is mainly depending on the structure and environment of particles. Nevertheless, unexplained variations have been reported between structurally similar viruses and with pH. This indicates that some modulating factors of their hydrophobicity remain to be identified. Herein we investigate the potential involvement of RNA cargo in the MS2 phage used as non-enveloped RNA virus model, by examining the SDS-induced electrophoretic mobility shift (SEMS) determined for native MS2 virions and corresponding RNA-free VLPs at various pH. Interestingly, the SEMS of VLPs was larger and more variable from pH 5 to 9 compared to native virions. These observations are discussed in term of RNA-dependent changes in surface hydrophobicity, suggesting that RNA cargo may be a major modulator/regulator of this viral parameter.


Assuntos
Levivirus , RNA Viral , Levivirus/genética , Levivirus/química , RNA Viral/genética , Interações Hidrofóbicas e Hidrofílicas
6.
Virology ; 568: 23-30, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077959

RESUMO

The hydrophobicity of virions is a major physicochemical parameter regulating their dissemination in humans and the environment. But knowledge about potential factors modulating virion hydrophobicity is limited due to the lack of suitable quantifying methods. It has been recently shown that sodium dodecyl-sulfate (SDS) labels capsid hydrophobic domains in capillary zone electrophoresis of non-enveloped virions, altering their electrophoretic mobility (µ) in proportion to their hydrophobicity. This was exploited here to quantify the hydrophobicity of GA, Qß and MS2 phages as a function of pH. By subtracting the native from the SDS-modified µ of phages, measured in the absence and presence of SDS, respectively, we defined a "hydrophobic index" increasing with virion hydrophobicity. Using this approach, we found that the virion hydrophobicity changes at a virion-specific pivotal pH. This procedure may be applied under various physicochemical conditions and to diverse non-enveloped virus families of significance to human health and the environment.


Assuntos
Eletroforese Capilar , Interações Hidrofóbicas e Hidrofílicas , Vírion/química , Algoritmos , Sequência de Aminoácidos , Bacteriófagos/química , Humanos , Modelos Teóricos , Dodecilsulfato de Sódio , Proteínas Virais/química , Vírion/isolamento & purificação , Vírion/ultraestrutura
7.
Bioorg Med Chem ; 19(24): 7534-40, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22075235

RESUMO

Two well-known antibiotic heterocycles, the 'quinolone' nalidixic acid and the ß-lactam penicillin V, active at different levels of the bacterial growth process, have been attached via an ether-ester junction to the p-tert-butylcalix[4]arene lower rim, in alternate position. The resulting hydrophobic molecular drug-organisers were fully characterized, and evaluated over two Gram negative and three Gram positive reference strains, using disk diffusion assays with disks impregnated with solution of title compound in pure DMSO. An interesting activity was observed over Staphylococcus aureus ATCC 25923 with the dis-symmetrical podand incorporating one penicillin and one nalidixic ester moieties.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ácido Nalidíxico/química , Ácido Nalidíxico/farmacologia , Penicilina V/análogos & derivados , Penicilina V/farmacologia , Antibacterianos/síntese química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Calixarenos/síntese química , Calixarenos/química , Calixarenos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Ácido Nalidíxico/síntese química , Penicilina V/síntese química , Staphylococcus aureus/efeitos dos fármacos
8.
Org Biomol Chem ; 8(2): 378-83, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20066273

RESUMO

The de novo synthesis of racemic 1',4'-dimethyluridine was accomplished in 12 steps starting from 2,5-dimethylfuran and vinylene carbonate. Key steps of the sequence include the stereoconvergent preparation of a meso diacid, and a stereoselective glycosylation without neighboring group participation. Such 1',4'-disubstituted ribonucleoside analogues are undisclosed compounds, which may present interesting biological activities.


Assuntos
Uridina/análogos & derivados , Uridina/química , Uridina/síntese química , Álcoois/química , Carboidratos/síntese química , Glicosilação , Heptanos/química , Compostos Heterocíclicos/química , Hidroxilação , Modelos Moleculares , Conformação Molecular , Oxirredução , Estereoisomerismo , Especificidade por Substrato
9.
Sci Rep ; 7(1): 10697, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878347

RESUMO

Some bacterial proteins involved in cell division and oxidative phosphorylation are tightly bound to cardiolipin. Cardiolipin is a non-bilayer anionic phospholipid found in bacterial inner membrane. It forms lipid microdomains located at the cell poles and division plane. Mechanisms by which microdomains are affected by membrane-acting antibiotics and the impact of these alterations on membrane properties and protein functions remain unclear. In this study, we demonstrated cardiolipin relocation and clustering as a result of exposure to a cardiolipin-acting amphiphilic aminoglycoside antibiotic, the 3',6-dinonyl neamine. Changes in the biophysical properties of the bacterial membrane of P. aeruginosa, including decreased fluidity and increased permeability, were observed. Cardiolipin-interacting proteins and functions regulated by cardiolipin were impacted by the amphiphilic aminoglycoside as we demonstrated an inhibition of respiratory chain and changes in bacterial shape. The latter effect was characterized by the loss of bacterial rod shape through a decrease in length and increase in curvature. It resulted from the effect on MreB, a cardiolipin dependent cytoskeleton protein as well as a direct effect of 3',6-dinonyl neamine on cardiolipin. These results shed light on how targeting cardiolipin microdomains may be of great interest for developing new antibacterial therapies.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antígenos de Bactérias/metabolismo , Cardiolipinas/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Tensoativos/farmacologia , Aminoglicosídeos/química , Antibacterianos/química , Antígenos de Bactérias/química , Cardiolipinas/química , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Moleculares , Conformação Molecular , Inibidores da Síntese de Proteínas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Relação Quantitativa Estrutura-Atividade , Eletricidade Estática , Tensoativos/química
10.
J Med Chem ; 59(20): 9350-9369, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27690420

RESUMO

Aminoglycosides (AGs) constitute a major family of potent and broad-spectrum antibiotics disturbing protein synthesis through binding to the A site of 16S rRNA. Decades of widespread clinical use of AGs strongly reduced their clinical efficacy through the selection of resistant bacteria. Recently, conjugation of lipophilic groups to AGs generated a novel class of potent antibacterial amphiphilic aminoglycosides (AAGs) with significant improved activities against various sensitive and resistant bacterial strains. We have identified amphiphilic 3',6-dialkyl derivatives of the small aminoglycoside neamine as broad spectrum antibacterial agents targeting bacterial membranes. Here, we report on the synthesis and the activity against sensitive and resistant Gram-negative and/or Gram-positive bacteria of new amphiphilic 3',4'-dialkyl neamine derivatives and of their smaller analogues in the 6-aminoglucosamine (neosamine) series prepared from N-acetylglucosamine.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Framicetina/química , Framicetina/farmacologia , Glucosamina/análogos & derivados , Tensoativos/farmacologia , Aminoglicosídeos/síntese química , Aminoglicosídeos/química , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Framicetina/síntese química , Glucosamina/síntese química , Glucosamina/química , Glucosamina/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tensoativos/síntese química , Tensoativos/química
11.
Colloids Surf B Biointerfaces ; 102: 659-66, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23107944

RESUMO

Monolayers formed with 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] and 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] at the air/water interface were used as model membranes for studying a potential biological activity of four newly synthesized gemini amphiphilic pseudopeptides (GAPs); some of the GAPs studied showed interesting self-assembly properties. The capacity of GAPs to self-assemble in different environments let us think that these molecules may find biomedical applications in, e.g., drug delivery or transfection. The surface pressure-area and surface potential-area compression isotherms, as well as Brewster angle microscopy and polarization-modulation infrared reflection-absorption spectroscopy were used to study monolayers formed with pure GAPs, pure lipids and lipid/GAPs mixtures. The results obtained show that all four GAPs studied can be incorporated in lipid monolayers. The monolayers containing GAPs are expanded and more liquid-like compared to pure lipids. The overall results indicate that the important changes of the properties induced in the model membranes by GAPs are related to their intrinsic conformational flexibility. This feature of GAPs can be easily adjusted by engineering the structure of the spacer present in the polar head, with the aim to modify lipid membranes in a controlled way.


Assuntos
Peptídeos/química , Fosfolipídeos/química , Modelos Químicos , Estrutura Molecular , Propriedades de Superfície
12.
J Phys Chem B ; 115(50): 15002-12, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22081973

RESUMO

Tetra-p-guanidinoethylcalix[4]arene trifluoroacetate salt (CX1) was synthesized recently as an antibacterial agent. It showed to be active in vitro against various Gram-positive and Gram-negative bacteria. To get more insight in the mechanism of the biological activity of this derivative, it was studied upon interactions with model lipid membranes. Langmuir monolayers were formed with zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine or 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine, and with anionic 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) and 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine. The two classes of lipids were used, respectively, as model lipids of the eukaryotic and bacterial cell membranes. The monolayers were exposed to CX1 at different concentrations around the minimum inhibitory concentration found for E. coli . The surface pressure-area and surface potential-area compression isotherms, as well as Brewster angle microscopy and polarization-modulation infrared reflection-absorption spectroscopy, were employed to study the monolayers. The results obtained show a higher affinity of CX1 for the anionic lipids, indicating importance of charge-charge interactions. On the basis of a comparative study of the behavior of CX1 and that of p-guanidinoethylphenol trifluoroacetate salt, we propose that interplay of charge-charge and apolar interactions between CX1 and lipids is responsible for the important reorganization of model membranes. This proposal may be helpful in developing new antibacterial calixarene derivatives.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Guanidinas/farmacologia , Absorção , Antibacterianos/química , Antibacterianos/metabolismo , Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Guanidinas/química , Guanidinas/metabolismo , Modelos Moleculares , Conformação Molecular , Fosfolipídeos/metabolismo , Propriedades de Superfície
13.
J Phys Chem B ; 114(32): 10427-35, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20701377

RESUMO

The two new p-tert-butylcalix[4]arene derivatives described here bear one or two nalidixic acid arms linked to the lower calixarene rim via the quinolone carboxylate moiety. These derivatives were synthesized in order to investigate two important features of molecules conceived as potential antibiotics, namely, metal cation complexation and interfacial properties, and the way in which they interrelate. The properties of the calixarene derivatives were studied in monomolecular films spread on pure water and on aqueous subphases containing biologically relevant mono- and divalent metal cations. These systems were examined via surface pressure and surface electrical potential measurements, polarization modulation infrared reflection absorption spectroscopy, and molecular modeling. Molecular modeling shows that important differences exist, first, between the structure and stability of the complexes formed with the two derivatives and, second, between their mono- and dication complexes. Correlating the properties of the monolayers with those of the modeled molecules lets us propose that the derivatives bearing one or two nalidixic pending arms form preferentially inter- and intramolecular complexes, respectively. The results obtained in this study indicate that a possible biological role of the nalidixic arms grafted on the calixarene crown may be revealed upon cation complexation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA