Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant J ; 94(1): 146-156, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29396988

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the reaction between gaseous carbon dioxide (CO2 ) and ribulose-1,5-bisphosphate. Although it is one of the most studied enzymes, the assembly mechanisms of the large hexadecameric RuBisCO is still emerging. In bacteria and in the C4 plant Zea mays, a protein with distant homology to pterin-4α-carbinolamine dehydratase (PCD) has recently been shown to be involved in RuBisCO assembly. However, studies of the homologous PCD-like protein (RAF2, RuBisCO assembly factor 2) in the C3 plant Arabidopsis thaliana (A. thaliana) have so far focused on its role in hormone and stress signaling. We investigated whether A. thalianaRAF2 is also involved in RuBisCO assembly. We localized RAF2 to the soluble chloroplast stroma and demonstrated that raf2 A. thaliana mutant plants display a severe pale green phenotype with reduced levels of stromal RuBisCO. We concluded that the RAF2 protein is probably involved in RuBisCO assembly in the C3 plant A. thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Técnicas de Inativação de Genes , Filogenia , Alinhamento de Sequência , Tilacoides/metabolismo
2.
Bioinformatics ; 33(9): 1370-1378, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453685

RESUMO

Motivation: Phenomics is essential for understanding the mechanisms that regulate or influence growth, fitness, and development. Techniques have been developed to conduct high-throughput large-scale phenotyping on animals, plants and humans, aiming to bridge the gap between genomics, gene functions and traits. Although new developments in phenotyping techniques are exciting, we are limited by the tools to analyze fully the massive phenotype data, especially the dynamic relationships between phenotypes and environments. Results: We present a new algorithm called PhenoCurve, a knowledge-based curve fitting algorithm, aiming to identify the complex relationships between phenotypes and environments, thus studying both values and trends of phenomics data. The results on both real and simulated data showed that PhenoCurve has the best performance among all the six tested methods. Its application to photosynthesis hysteresis pattern identification reveals new functions of core genes that control photosynthetic efficiency in response to varying environmental conditions, which are critical for understanding plant energy storage and improving crop productivity. Availability and Implementation: Software is available at phenomics.uky.edu/PhenoCurve. Contact: chen.jin@uky.edu or kramerd8@cns.msu.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Interação Gene-Ambiente , Fotossíntese , Plantas/genética , Software , Algoritmos , Plantas/metabolismo
3.
J Exp Bot ; 69(3): 699-709, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29300935

RESUMO

Local adaptation is common, but the traits and genes involved are often unknown. Physiological responses to cold probably contribute to local adaptation in wide-ranging species, but the genetic basis underlying natural variation in these traits has rarely been studied. Using a recombinant inbred (495 lines) mapping population from locally adapted populations of Arabidopsis thaliana from Sweden and Italy, we grew plants at low temperature and mapped quantitative trait loci (QTLs) for traits related to photosynthesis: maximal quantum efficiency (Fv/Fm), rapidly reversible photoprotection (NPQfast), and photoinhibition of PSII (NPQslow) using high-throughput, whole-plant measures of chlorophyll fluorescence. In response to cold, the Swedish line had greater values for all traits, and for every trait, large effect QTLs contributed to parental differences. We found one major QTL affecting all traits, as well as unique major QTLs for each trait. Six trait QTLs overlapped with previously published locally adaptive QTLs based on fitness measured in the native environments over 3 years. Our results demonstrate that photosynthetic responses to cold can vary dramatically within a species, and may predominantly be caused by a few QTLs of large effect. Some photosynthesis traits and QTLs probably contribute to local adaptation in this system.


Assuntos
Arabidopsis/fisiologia , Temperatura Baixa , Fotossíntese/genética , Locos de Características Quantitativas , Adaptação Biológica , Arabidopsis/genética , Itália , Suécia
4.
Plant J ; 87(6): 654-63, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27233821

RESUMO

The chloroplast ATP synthase is known to be regulated by redox modulation of a disulfide bridge on the γ-subunit through the ferredoxin-thioredoxin regulatory system. We show that a second enzyme, the recently identified chloroplast NADPH thioredoxin reductase C (NTRC), plays a role specifically at low irradiance. Arabidopsis mutants lacking NTRC (ntrc) displayed a striking photosynthetic phenotype in which feedback regulation of the light reactions was strongly activated at low light, but returned to wild-type levels as irradiance was increased. This effect was caused by an altered redox state of the γ-subunit under low, but not high, light. The low light-specific decrease in ATP synthase activity in ntrc resulted in a buildup of the thylakoid proton motive force with subsequent activation of non-photochemical quenching and downregulation of linear electron flow. We conclude that NTRC provides redox modulation at low light using the relatively oxidizing substrate NADPH, whereas the canonical ferredoxin-thioredoxin system can take over at higher light, when reduced ferredoxin can accumulate. Based on these results, we reassess previous models for ATP synthase regulation and propose that NTRC is most likely regulated by light. We also find that ntrc is highly sensitive to rapidly changing light intensities that probably do not involve the chloroplast ATP synthase, implicating this system in multiple photosynthetic processes, particularly under fluctuating environmental conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Técnicas de Inativação de Genes , Luz , Mutação , Oxirredução , Fotossíntese , Tiorredoxina Dissulfeto Redutase/genética
5.
Bioinformatics ; 31(11): 1796-804, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617414

RESUMO

MOTIVATION: Plant phenomics, the collection of large-scale plant phenotype data, is growing exponentially. The resources have become essential component of modern plant science. Such complex datasets are critical for understanding the mechanisms governing energy intake and storage in plants, and this is essential for improving crop productivity. However, a major issue facing these efforts is the determination of the quality of phenotypic data. Automated methods are needed to identify and characterize alterations caused by system errors, all of which are difficult to remove in the data collection step and distinguish them from more interesting cases of altered biological responses. RESULTS: As a step towards solving this problem, we have developed a coarse-to-refined model called dynamic filter to identify abnormalities in plant photosynthesis phenotype data by comparing light responses of photosynthesis using a simplified kinetic model of photosynthesis. Dynamic filter employs an expectation-maximization process to adjust the kinetic model in coarse and refined regions to identify both abnormalities and biological outliers. The experimental results show that our algorithm can effectively identify most of the abnormalities in both real and synthetic datasets. AVAILABILITY AND IMPLEMENTATION: Software available at www.msu.edu/%7Ejinchen/DynamicFilter .


Assuntos
Algoritmos , Fenótipo , Fotossíntese , Plantas/metabolismo , Modelos Biológicos , Controle de Qualidade
6.
Plant Physiol ; 155(4): 1589-600, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21224340

RESUMO

Large-scale phenotypic screening presents challenges and opportunities not encountered in typical forward or reverse genetics projects. We describe a modular database and laboratory information management system that was implemented in support of the Chloroplast 2010 Project, an Arabidopsis (Arabidopsis thaliana) reverse genetics phenotypic screen of more than 5,000 mutants (http://bioinfo.bch.msu.edu/2010_LIMS; www.plastid.msu.edu). The software and laboratory work environment were designed to minimize operator error and detect systematic process errors. The database uses Ruby on Rails and Flash technologies to present complex quantitative and qualitative data and pedigree information in a flexible user interface. Examples are presented where the database was used to find opportunities for process changes that improved data quality. We also describe the use of the data-analysis tools to discover mutants defective in enzymes of leucine catabolism (heteromeric mitochondrial 3-methylcrotonyl-coenzyme A carboxylase [At1g03090 and At4g34030] and putative hydroxymethylglutaryl-coenzyme A lyase [At2g26800]) based upon a syndrome of pleiotropic seed amino acid phenotypes that resembles previously described isovaleryl coenzyme A dehydrogenase (At3g45300) mutants. In vitro assay results support the computational annotation of At2g26800 as hydroxymethylglutaryl-coenzyme A lyase.


Assuntos
Arabidopsis/genética , Cloroplastos/genética , Bases de Dados Genéticas , Armazenamento e Recuperação da Informação/métodos , Arabidopsis/metabolismo , DNA Bacteriano/genética , Sistemas de Gerenciamento de Base de Dados , Internet , Mutagênese Insercional , Mutação , Fenótipo , Software , Interface Usuário-Computador
7.
Plant Physiol ; 152(2): 529-40, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19906890

RESUMO

Traditionally, phenotype-driven forward genetic plant mutant studies have been among the most successful approaches to revealing the roles of genes and their products and elucidating biochemical, developmental, and signaling pathways. A limitation is that it is time consuming, and sometimes technically challenging, to discover the gene responsible for a phenotype by map-based cloning or discovery of the insertion element. Reverse genetics is also an excellent way to associate genes with phenotypes, although an absence of detectable phenotypes often results when screening a small number of mutants with a limited range of phenotypic assays. The Arabidopsis Chloroplast 2010 Project (www.plastid.msu.edu) seeks synergy between forward and reverse genetics by screening thousands of sequence-indexed Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutants for a diverse set of phenotypes. Results from this project are discussed that highlight the strengths and limitations of the approach. We describe the discovery of altered fatty acid desaturation phenotypes associated with mutants of At1g10310, previously described as a pterin aldehyde reductase in folate metabolism. Data are presented to show that growth, fatty acid, and chlorophyll fluorescence defects previously associated with antisense inhibition of synthesis of the family of acyl carrier proteins can be attributed to a single gene insertion in Acyl Carrier Protein4 (At4g25050). A variety of cautionary examples associated with the use of sequence-indexed T-DNA mutants are described, including the need to genotype all lines chosen for analysis (even when they number in the thousands) and the presence of tagged and untagged secondary mutations that can lead to the observed phenotypes.


Assuntos
Arabidopsis/genética , Cloroplastos/genética , Genômica/métodos , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , DNA Bacteriano/genética , DNA de Plantas/genética , Ácidos Graxos/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Mutação , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
8.
Nat Plants ; 6(1): 13-21, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932677

RESUMO

Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype-nucleotype combinations (cybrids)1. We generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype-plasmotype-environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype-plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance.


Assuntos
Arabidopsis/genética , Genoma de Planta , Organelas/genética , Fenótipo , Hibridização Genética
9.
J Chiropr Educ ; 33(2): 140-144, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30916993

RESUMO

OBJECTIVE: Clinical competency is integral to the doctor of chiropractic program and is dictated by the Council of Chiropractic Education accreditation standards. These meta-competencies, achieved through open-ended tasks, can be challenging for interrater agreement among multiple graders. We developed and tested interrater agreement of a newly created analytic rubric for a clinical case-based education program. METHODS: Clinical educators and research staff collaborated on rubric development and testing over four phases. Phase 1 tailored existing institutional rubrics to the new clinical case-based program using a 4-level scale of proficiency. Phase 2 tested the performance of the pilot rubric using 16 senior intern assessments graded by four instructors using pre-established grading keys. Phases 3 and 4 refined and retested rubric versions 1 and 2 on 16 and 14 assessments, respectively. RESULTS: Exact, adjacent, and pass/fail agreements between six pairs of graders were reported. The pilot rubric achieved 46% average exact, 80% average adjacent, and 63% pass/fail agreements. Rubric version 1 yielded 49% average exact, 86% average adjacent, and 70% pass/fail agreements. Rubric version 2 yielded 60% average exact, 93% average adjacent, and 81% pass/fail agreements. CONCLUSION: Our results are similar to those of other rubric interrater reliability studies. Interrater reliability improved with later versions of the rubric likely attributable to rater learning and rubric improvement. Future studies should focus on concurrent validity and comparison of student performance with grade point average and national board scores.

10.
Front Plant Sci ; 8: 719, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515738

RESUMO

In wild type plants, decreasing CO2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b6f complex. Here, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO2. The increased thylakoid proton conductivity (gH+) in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.

11.
Cell Syst ; 2(6): 365-77, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27336966

RESUMO

Understanding and improving the productivity and robustness of plant photosynthesis requires high-throughput phenotyping under environmental conditions that are relevant to the field. Here we demonstrate the dynamic environmental photosynthesis imager (DEPI), an experimental platform for integrated, continuous, and high-throughput measurements of photosynthetic parameters during plant growth under reproducible yet dynamic environmental conditions. Using parallel imagers obviates the need to move plants or sensors, reducing artifacts and allowing simultaneous measurement on large numbers of plants. As a result, DEPI can reveal phenotypes that are not evident under standard laboratory conditions but emerge under progressively more dynamic illumination. We show examples in mutants of Arabidopsis of such "emergent phenotypes" that are highly transient and heterogeneous, appearing in different leaves under different conditions and depending in complex ways on both environmental conditions and plant developmental age. These emergent phenotypes appear to be caused by a range of phenomena, suggesting that such previously unseen processes are critical for plant responses to dynamic environments.


Assuntos
Fotossíntese , Arabidopsis , Clorofila , Luz , Fenótipo , Desenvolvimento Vegetal , Folhas de Planta , Estresse Fisiológico
12.
Planta ; 198(4): 517-525, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28321661

RESUMO

Acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) is a regulatory enzyme of fatty acid synthesis, and in some higher-plant plastids is a multi-subunit complex consisting of biotin carboxylase (BC), biotin-carboxyl carrier protein (BCCP), and carboxyl transferase (CT). We recently described a Nicotiana tabacum L. (tobacco) cDNA with a deduced amino acid sequence similar to that of prokaryotic BC. We here provide further biochemical and immunological evidence that this higher-plant polypeptide is an authentic BC component of ACCase. The BC protein co-purified with ACCase activity and with BCCP during gel permeation chromatography of Pisum sativum L. (pea) chloroplast proteins. Antibodies to the Ricinus communis L. (castor) BC co-precipitated ACCase activity and BCCP. During castor seed development, ACCase activity and the levels of BC and BCCP increased and subsequently decreased in parallel, indicating their coordinate regulation. The BC protein comprised about 0.8% of the soluble protein in developing castor seed, and less than 0.05% of the protein in young leaf or root. Polypeptides cross-reacting with antibodies to castor BC were detected in several dicotyledons and in the monocotyledons Hemerocallis fulva L. (day lily), Iris L., and Allium cepa L. (onion), but not in the Gramineae species Hordeum vulgare L. (barley) and Panicum virgatum L. (switchgrass). The castor endosperm and pea chloroplast ACCases were not significantly inhibited by long-chain acyl-acyl carrier protein, free fatty acids or acyl carrier protein. The BC polypeptide was detected throughout Brassica napus L. (rapeseed) embryo development, in contrast to the multi-functional ACCase isoenzyme which was only detected early in development. These results firmly establish the identity of the BC polypeptide in plants and provide insight into the structure, regulation and roles of higherplant ACCases.

13.
PLoS One ; 8(9): e73291, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023856

RESUMO

The Chloroplast 2010 Project (http://www.plastid.msu.edu/) identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/). Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles were identified.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Núcleo Celular/genética , Biologia Computacional , Plastídeos/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Clorofila/metabolismo , Meios de Cultura , Perfilação da Expressão Gênica , Genes Letais/genética , Técnicas de Genotipagem , Germinação , Homozigoto , Internet , Anotação de Sequência Molecular , Mutação , Sementes/genética , Sementes/crescimento & desenvolvimento
14.
Methods Mol Biol ; 775: 161-85, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21863443

RESUMO

As part of a project to analyze chloroplast functional networks systematically, we have subjected mutants in >3,200 nuclear genes predicted to encode chloroplast-targeted proteins in Arabidopsis thaliana (http://www.plastid.msu.edu) to parallel phenotypic assays. Detailed methods are presented for the various assays being used in this project to study chloroplast biology. These include morphological analysis of plants, chloroplasts, and seeds using controlled vocabulary. Metabolites synthesized in the chloroplast such as starch, amino acids, and fatty acids are analyzed in groups according to their chemical properties. As an indicator for the relative composition of seed storage oil and proteins, the carbon and nitrogen contents are determined by an elemental analyzer. The methods in this chapter describe how the assays are configured to run in relatively high throughput, maximizing data quality.


Assuntos
Arabidopsis/citologia , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Biologia Computacional/métodos , Proteínas Mutantes/genética , Mutação , Fenótipo , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , DNA de Plantas/genética , Ácidos Graxos/metabolismo , Técnicas de Genotipagem , Proteínas Mutantes/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Sementes/citologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espectrometria de Fluorescência , Amido/metabolismo
15.
Plant Physiol ; 146(4): 1482-500, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18263779

RESUMO

In traditional mutant screening approaches, genetic variants are tested for one or a small number of phenotypes. Once bona fide variants are identified, they are typically subjected to a limited number of secondary phenotypic screens. Although this approach is excellent at finding genes involved in specific biological processes, the lack of wide and systematic interrogation of phenotype limits the ability to detect broader syndromes and connections between genes and phenotypes. It could also prevent detection of the primary phenotype of a mutant. As part of a systems biology approach to understand plastid function, large numbers of Arabidopsis thaliana homozygous T-DNA lines are being screened with parallel morphological, physiological, and chemical phenotypic assays (www.plastid.msu.edu). To refine our approaches and validate the use of this high-throughput screening approach for understanding gene function and functional networks, approximately 100 wild-type plants and 13 known mutants representing a variety of phenotypes were analyzed by a broad range of assays including metabolite profiling, morphological analysis, and chlorophyll fluorescence kinetics. Data analysis using a variety of statistical approaches showed that such industrial approaches can reliably identify plant mutant phenotypes. More significantly, the study uncovered previously unreported phenotypes for these well-characterized mutants and unexpected associations between different physiological processes, demonstrating that this approach has strong advantages over traditional mutant screening approaches. Analysis of wild-type plants revealed hundreds of statistically robust phenotypic correlations, including metabolites that are not known to share direct biosynthetic origins, raising the possibility that these metabolic pathways have closer relationships than is commonly suspected.


Assuntos
Arabidopsis/genética , Mutação , Arabidopsis/metabolismo , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Fluorescência , Variação Genética , Espectrometria de Massas em Tandem
16.
Plant Physiol ; 132(2): 681-97, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12805597

RESUMO

The genome of Arabidopsis has been searched for sequences of genes involved in acyl lipid metabolism. Over 600 encoded proteins have been identified, cataloged, and classified according to predicted function, subcellular location, and alternative splicing. At least one-third of these proteins were previously annotated as "unknown function" or with functions unrelated to acyl lipid metabolism; therefore, this study has improved the annotation of over 200 genes. In particular, annotation of the lipolytic enzyme group (at least 110 members total) has been improved by the critical examination of the biochemical literature and the sequences of the numerous proteins annotated as "lipases." In addition, expressed sequence tag (EST) data have been surveyed, and more than 3,700 ESTs associated with the genes were cataloged. Statistical analysis of the number of ESTs associated with specific cDNA libraries has allowed calculation of probabilities of differential expression between different organs. More than 130 genes have been identified with a statistical probability > 0.95 of preferential expression in seed, leaf, root, or flower. All the data are available as a Web-based database, the Arabidopsis Lipid Gene database (http://www.plantbiology.msu.edu/lipids/genesurvey/index.htm). The combination of the data of the Lipid Gene Catalog and the EST analysis can be used to gain insights into differential expression of gene family members and sets of pathway-specific genes, which in turn will guide studies to understand specific functions of individual genes.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Enzimas/genética , Etiquetas de Sequências Expressas , Metabolismo dos Lipídeos , Acilação , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Biblioteca Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA