Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mov Disord ; 35(4): 616-628, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930749

RESUMO

BACKGROUND: Apathy is one of the most disabling neuropsychiatric symptoms in Parkinson's disease (PD) patients and has a higher prevalence in patients under subthalamic nucleus deep brain stimulation. Indeed, despite its effectiveness for alleviating PD motor symptoms, its neuropsychiatric repercussions have not yet been fully uncovered. Because it can be alleviated by dopaminergic therapies, especially D2 and D3 dopaminergic receptor agonists, the commonest explanation proposed for apathy after subthalamic nucleus deep brain stimulation is a too-strong reduction in dopaminergic treatments. The objective of this study was to determine whether subthalamic nucleus deep brain stimulation can induce apathetic behaviors, which remains an important matter of concern. We aimed to unambiguously address this question of the motivational effects of chronic subthalamic nucleus deep brain stimulation. METHODS: We longitudinally assessed the motivational effects of chronic subthalamic nucleus deep brain stimulation by using innovative wireless microstimulators, allowing continuous stimulation of the subthalamic nucleus in freely moving rats and a pharmacological therapeutic approach. RESULTS: We showed for the first time that subthalamic nucleus deep brain stimulation induces a motivational deficit in naive rats and intensifies those existing in a rodent model of PD neuropsychiatric symptoms. As reported from clinical studies, this loss of motivation was fully reversed by chronic treatment with pramipexole, a D2 and D3 dopaminergic receptor agonist. CONCLUSIONS: Taken together, these data provide experimental evidence that chronic subthalamic nucleus deep brain stimulation by itself can induce loss of motivation, reminiscent of apathy, independently of the dopaminergic neurodegenerative process or reduction in dopamine replacement therapy, presumably reflecting a dopaminergic-driven deficit. Therefore, our data help to clarify and reconcile conflicting clinical observations by highlighting some of the mechanisms of the neuropsychiatric side effects induced by chronic subthalamic nucleus deep brain stimulation. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Apatia , Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Animais , Agonistas de Dopamina/farmacologia , Humanos , Doença de Parkinson/terapia , Ratos
2.
J Neurosci ; 37(10): 2539-2554, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28159909

RESUMO

Dysfunction of the orbitofrontal (OFC) and anterior cingulate (ACC) cortices has been linked with several psychiatric disorders, including obsessive-compulsive disorder, major depressive disorder, posttraumatic stress disorder, and addiction. These conditions are also associated with abnormalities in the anterior limb of the internal capsule, the white matter (WM) bundle carrying ascending and descending fibers from the OFC and ACC. Furthermore, deep-brain stimulation (DBS) for psychiatric disorders targets these fibers. Experiments in rats provide essential information on the mechanisms of normal and abnormal brain anatomy, including WM composition and perturbations. However, whereas descending prefrontal cortex (PFC) fibers in primates form a well defined and topographic anterior limb of the internal capsule, the specific locations and organization of these fibers in rats is unknown. We address this gap by analyzing descending fibers from injections of an anterograde tracer in the rat ACC and OFC. Our results show that the descending PFC fibers in the rat form WM fascicles embedded within the striatum. These bundles are arranged topographically and contain projections, not only to the striatum, but also to the thalamus and brainstem. They can therefore be viewed as the rat homolog of the primate anterior limb of the internal capsule. Furthermore, mapping these projections allows us to identify the fibers likely to be affected by experimental manipulations of the striatum and the anterior limb of the internal capsule. These results are therefore essential for translating abnormalities of human WM and effects of DBS to rodent models.SIGNIFICANCE STATEMENT Psychiatric diseases are linked to abnormalities in specific white matter (WM) pathways, and the efficacy of deep-brain stimulation relies upon activation of WM. Experiments in rodents are necessary for studying the mechanisms of brain function. However, the translation of results between primates and rodents is hindered by the fact that the organization of descending WM in rodents is poorly understood. This is especially relevant for the prefrontal cortex, abnormal connectivity of which is central to psychiatric disorders. We address this gap by studying the organization of descending rodent prefrontal pathways. These fibers course through a subcortical structure, the striatum, and share important organization principles with primate WM. These results allow us to model primate WM effectively in the rodent.


Assuntos
Conectoma/métodos , Giro do Cíngulo/citologia , Cápsula Interna/citologia , Córtex Pré-Frontal/citologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
3.
Glia ; 63(4): 673-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25511180

RESUMO

The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia circuitry particularly sensitive to pathological dopamine depletion. Indeed, hyperactivity of SNr neurons is known to be responsible for some motor disorders characteristic of Parkinson's disease. The neuronal processing of basal ganglia dysfunction is well understood but, paradoxically, the role of astrocytes in the regulation of SNr activity has rarely been considered. We thus investigated the influence of the disruption of dopaminergic transmission on plastic changes at tripartite glutamatergic synapses in the rat SNr and on astrocyte calcium activity. In 6-hydroxydopamine-lesioned rats, we observed structural plastic changes of tripartite glutamatergic synapses and perisynaptic astrocytic processes. These findings suggest that subthalamonigral synapses undergo morphological changes that accompany the pathophysiological processes of Parkinson's disease. The pharmacological blockade of dopaminergic transmission (with sulpiride and SCH-23390) increased astrocyte calcium excitability, synchrony and gap junction coupling within the SNr, suggesting a functional adaptation of astrocytes to dopamine transmission disruption in this output nucleus. This hyperactivity is partly reversed by subthalamic nucleus high-frequency stimulation which has emerged as an efficient symptomatic treatment for Parkinson's disease. Therefore, our results demonstrate structural and functional reshaping of neuronal and glial elements highlighting a functional plasticity of neuroglial interactions when dopamine transmission is disrupted.


Assuntos
Astrócitos/metabolismo , Dopamina/metabolismo , Parte Reticular da Substância Negra/citologia , Parte Reticular da Substância Negra/metabolismo , Sinapses/patologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Benzazepinas/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Masculino , Oxidopamina/toxicidade , Parte Reticular da Substância Negra/lesões , Parte Reticular da Substância Negra/patologia , Ratos , Sulpirida/farmacologia , Sinapses/metabolismo
5.
Mov Disord ; 30(13): 1739-49, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25588931

RESUMO

High-frequency stimulation (HFS) of the subthalamic nucleus (STN) is recognized as an effective treatment for the motor symptoms of Parkinson's disease (PD), but its mechanisms, particularly as concern dopaminergic transmission, remain unclear. The aim of this study was to evaluate changes in the expression of dopaminergic receptors (D1, D2, and D3 receptors) after prolonged (4 h) unilateral STN-HFS in anesthetized intact rats and rats with total dopaminergic denervation. We used [(3)H]SCH 23390, [(125)I]iodosulpride, and [(125)I]OH-PIPAT to assess the densities of D1R, D2R, and D3R, respectively, within different areas of the striatum-a major input structure of the basal ganglia-including the nucleus accumbens. We found that STN-HFS increased D1 R levels in almost all of the striatal areas examined, in both intact and denervated rats. By contrast, STN-HFS led to a large decrease in D2 R and D3R levels, limited to the nucleus accumbens and independent of the dopaminergic state of the animals. These data suggest that the influence of STN-HFS on striatal D1 R expression may contribute to its therapeutic effects on motor symptoms, whereas its impact on D2R/D3 R levels in the nucleus accumbens may account for the neuropsychiatric side effects often observed in stimulated PD patients, such as postoperative apathy.


Assuntos
Corpo Estriado/metabolismo , Estimulação Encefálica Profunda , Receptores Dopaminérgicos/metabolismo , Núcleo Subtalâmico/fisiologia , Adrenérgicos/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Lateralidade Funcional/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Oxidopamina/farmacologia , Ligação Proteica/efeitos dos fármacos , Radioisótopos/farmacocinética , Ratos , Receptores Dopaminérgicos/genética , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Mov Disord ; 29(7): 912-20, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24515412

RESUMO

Recent evidence suggests that Parkinson's disease affects not only movement, but also cognitive and psychiatric functions. Among these nonmotor complications, apathy, which is defined as a lack of motivation and operationalized as a quantitative reduction in goal-directed behavior, may even precede motor impairments, disappearing with the introduction of dopaminergic (DA) therapies and possibly reappearing with its discontinuation, suggesting a causal role of DA. We recently developed a lesion-based model, with stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into precise areas of the rat SNc or ventral tegmental area and showed, in several operant tasks, that a partial denervation of the nigrostriatal, but not of the mesocorticolimbic, DA system induced profound motivational deficits during instrumental action. We investigated the time course of the effects of nigrostriatal DA denervation on motivation in rats, by assessing the negative effect of SNc bilateral 6-OHDA infusion on preacquired operant behavior, and determining whether the induced deficits were sensitive to the introduction and withdrawal of a clinically relevant PD treatment, the DA D2/D3 receptor agonist, pramipexole (PRA). Partial nigrostriatal DA denervation was accompanied by a significant reduction in operant behavior. This deficit, indicative of a decrease in motivation, was fully reversed by PRA and reappeared after treatment withdrawal. This longitudinal preclinical study provides evidence for the implication of the DA nigrostriatal system in PD-associated apathy. Moreover, by showing a good isomorphy and predictive value, our model highlights the relevance of D2/D3 receptors as potential targets for alleviating apathy in PD.


Assuntos
Apatia/efeitos dos fármacos , Benzotiazóis/uso terapêutico , Encéfalo/efeitos dos fármacos , Agonistas de Dopamina/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Receptores Dopaminérgicos/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Pramipexol , Ratos
7.
Transl Psychiatry ; 14(1): 86, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336862

RESUMO

Impulse control disorders (ICDs), a wide spectrum of maladaptive behaviors which includes pathological gambling, hypersexuality and compulsive buying, have been recently suggested to be triggered or aggravated by treatments with dopamine D2/3 receptor agonists, such as pramipexole (PPX). Despite evidence showing that impulsivity is associated with functional alterations in corticostriatal networks, the neural basis of the exacerbation of impulsivity by PPX has not been elucidated. Here we used a hotspot analysis to assess the functional recruitment of several corticostriatal structures by PPX in male rats identified as highly (HI), moderately impulsive (MI) or with low levels of impulsivity (LI) in the 5-choice serial reaction time task (5-CSRTT). PPX dramatically reduced impulsivity in HI rats. Assessment of the expression pattern of the two immediate early genes C-fos and Zif268 by in situ hybridization subsequently revealed that PPX resulted in a decrease in Zif268 mRNA levels in different striatal regions of both LI and HI rats accompanied by a high impulsivity specific reduction of Zif268 mRNA levels in prelimbic and cingulate cortices. PPX also decreased C-fos mRNA levels in all striatal regions of LI rats, but only in the dorsolateral striatum and nucleus accumbens core (NAc Core) of HI rats. Structural equation modeling further suggested that the anti-impulsive effect of PPX was mainly attributable to the specific downregulation of Zif268 mRNA in the NAc Core. Altogether, our results show that PPX restores impulse control in highly impulsive rats by modulation of limbic frontostriatal circuits.


Assuntos
Agonistas de Dopamina , Comportamento Impulsivo , Ratos , Masculino , Animais , Pramipexol/farmacologia , Comportamento Impulsivo/fisiologia , Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , RNA Mensageiro
8.
BMC Neurosci ; 14: 152, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24308494

RESUMO

BACKGROUND: It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson's disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. RESULTS: Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. CONCLUSIONS: These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.


Assuntos
Gânglios da Base/metabolismo , Vias Neurais/metabolismo , Doença de Parkinson/metabolismo , Núcleo Subtalâmico/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/biossíntese , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley
9.
NMR Biomed ; 26(3): 336-47, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23059905

RESUMO

Using in vivo ¹H NMR spectroscopy in a mouse model of Parkinson's disease, we previously showed that glutamate concentrations in the dorsal striatum were highest after dopamine denervation associated with an increase in gamma-aminobutyric acid (GABA) and (Gln) glutamine levels. The aim of this study was to determine whether the changes previously observed in the motor part of the striatum were reproduced in a ventral part of the striatum, the nucleus accumbens (NAc). This study was carried out on controls and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. In vivo spectra were acquired for a voxel (8 µL) in the dorsal striatum, and in the NAc (1.56 µL). NMR acquisitions were first performed 10 days after the last MPTP injection in a basal condition [after saline intraperitoneal (i.p.) injection] and then in the same animal the week after basal NMR acquisitions, after acute levodopa administration (200 mg kg⁻¹, i.p.). Immunohistochemistry was used to determine the levels of (Glu) glutamate, glutamine synthetase (GS) and glutamic acid decarboxylase (GAD) isoform 67 in these two structures. The Glu, Gln and GABA concentrations obtained in the basal state were higher in the NAc of MPTP-intoxicated mice which have the higher dopamine denervation in the ventral tegmental area (VTA) and in the dorsal striatum. Levodopa decreased the levels of these metabolites in MPTP-intoxicated mice to levels similar to those in controls. In parallel, immunohistochemical staining showed that glutamate, GS and GAD67 immunoreactivity increased in the dorsal striatum of MPTP-intoxicated mice and in the NAc for animals with a severe dopamine denervation in VTA. These findings strongly supported a hyperactivity of the glutamatergic cortico-striatal pathway and changes in glial activity when the dopaminergic denervation in the VTA and substantia nigra pars compacta (SNc) was severe.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Espectroscopia de Ressonância Magnética/métodos , Neurotransmissores/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prótons , Distribuição Tecidual
10.
Chem Res Toxicol ; 26(1): 78-88, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23268549

RESUMO

Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.


Assuntos
Morte Celular/efeitos dos fármacos , Etanol/toxicidade , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Caspase 3/metabolismo , Células Cultivadas , Ciclosporina/farmacologia , Feminino , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , NAD/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Nortriptilina/farmacologia , Gravidez
11.
Curr Top Behav Neurosci ; 60: 109-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35469394

RESUMO

Parkinson's disease (PD), which is traditionally viewed as a motor disorder involving the degeneration of dopaminergic (DA) neurons, has recently been identified as a quintessential neuropsychiatric condition. Indeed, a plethora of non-motor symptoms may occur in PD, including apathy. Apathy can be defined as a lack of motivation or a deficit of goal-directed behaviors and results in a pathological decrease of self-initiated voluntary behavior. Apathy in PD appears to fluctuate with the DA state of the patients, suggesting a critical role of DA neurotransmission in the pathophysiology of this neuropsychiatric syndrome. Using a lesion-based approach, we developed a rodent model which exhibits specific alteration in the preparatory component of motivational processes, reminiscent to apathy in PD. We found a selective decrease of DA D3 receptors (D3R) expression in the dorsal striatum of lesioned rats. Next, we showed that inhibition of D3R neurotransmission in non-lesioned animals was sufficient to reproduce the motivational deficit observed in our model. Interestingly, we also found that pharmacologically targeting D3R efficiently reversed the motivational deficit induced by the lesion. Our findings, among other recent data, suggest a critical role of D3R in parkinsonian apathy and highlight this receptor as a promising target for treating motivational deficits.


Assuntos
Apatia , Doença de Parkinson , Ratos , Animais , Receptores de Dopamina D3/metabolismo , Motivação , Apatia/fisiologia
12.
Neurobiol Dis ; 48(3): 379-90, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22759925

RESUMO

Dyskinesia is a major side effect of chronic levodopa (L-DOPA) administration, the reference treatment for Parkinson's disease (PD). High-frequency stimulation of the subthalamic nucleus (STN-HFS) alleviates parkinsonian motor symptoms and indirectly improves dyskinesia by decreasing L-DOPA requirement. However, inadequate stimulation can also trigger dyskinetic movements in PD patients and animal models. Here, we investigated the possible association between L-DOPA- and STN-HFS-induced dyskinesia and regulation of the NR2B subunit of NMDA receptors in the rodent model of PD. We subjected 6-OHDA-lesioned rats to HFS for 1h, at an intensity triggering forelimb dyskinesia. Other 6-OHDA-lesioned rats were treated with chronic high doses of L-DOPA for ten days, to induce abnormal involuntary movements. The 6-OHDA lesion regulated NR2B only in the SNr, where the activation of NR2B was observed (as assessed by phosphorylation of the Tyr1472 residue). Both STN-HFS and L-DOPA dyskinesiogenic treatments induced NR2B activation in the STN and EP, but only L-DOPA triggered NR2B hyperphosphorylation in the striatum. Finally, the use of CP-101,606 exacerbated L-DOPA-induced motor behavior and associated NR2B hyperphosphorylation in the striatum, STN and EP. Thus, NR2B activation in basal ganglia structures is correlated with dyskinesia.


Assuntos
Gânglios da Base/metabolismo , Discinesias/etiologia , Discinesias/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Estimulação Encefálica Profunda/efeitos adversos , Dopaminérgicos/efeitos adversos , Eletrodos Implantados , Imuno-Histoquímica , Levodopa/efeitos adversos , Masculino , Transtornos Parkinsonianos/terapia , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/metabolismo
13.
Brain ; 133(Pt 4): 1111-27, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20237128

RESUMO

Apathy has been reported to occur after subthalamic nucleus stimulation, a treatment of motor complications in advanced Parkinson's disease. We carried out a prospective study of the occurrence of apathy and associated symptoms, predictors and mechanisms in the year following subthalamic stimulation. Dopamine agonist drugs were discontinued immediately after surgery and levodopa was markedly reduced within 2 weeks. Apathy and depression were assessed monthly, using the Starkstein apathy scale and the Beck Depression Inventory. Dopamine agonists were re-introduced if patients developed apathy or depression. Preoperative non-motor fluctuations were evaluated using the Ardouin Scale. Depression, apathy and anxiety were evaluated both on and off levodopa. Analysis of predictors of apathy was performed using a Cox proportional hazard model. Twelve patients who developed apathy and a control group of 13 patients who did not underwent [11C]-raclopride positron emission tomography scanning before and after oral intake of methylphenidate. In 63 patients with Parkinson's disease treated with subthalamic stimulation, dopaminergic treatment was decreased by 82% after surgery. Apathy occurred after a mean of 4.7 (3.3-8.2) months in 34 patients and was reversible in half of these by the 12-month follow-up. Seventeen patients developed transient depression after 5.7 (4.7-9.3) months and these fell into the apathy group with one single exception. At baseline, fluctuations in depression, apathy and anxiety scores were greater in the group with apathy. Fluctuations in apathy, depression and anxiety ratings during a baseline levodopa challenge were also significant predictors of postoperative apathy in univariate analysis, but not motor and cognitive states or the level of reduction of dopaminergic medication. The multivariate model identified non-motor fluctuations in everyday life and anxiety score during the baseline levodopa challenge as two independent significant predictors of postoperative apathy. Without methylphenidate, [11C]-raclopride binding potential values were greater in apathetic patients bilaterally in the orbitofrontal, dorsolateral prefrontal, posterior cingulate and temporal cortices, left striatum and right amygdala, reflecting greater dopamine D2/D3 receptor density and/or reduced synaptic dopamine level in these areas. The variations of [11C]-raclopride binding potential values induced by methylphenidate were greater in non-apathetic patients in the left orbitofrontal cortex, dorsolateral prefrontal cortex, thalamus and internal globus pallidus and bilaterally in the anterior and posterior cingulate cortices, consistent with a more important capacity to release dopamine. Non-motor fluctuations are related to mesolimbic dopaminergic denervation. Apathy, depression and anxiety can occur after surgery as a delayed dopamine withdrawal syndrome. A varying extent of mesolimbic dopaminergic denervation and differences in dopaminergic treatment largely determine mood, anxiety and motivation in patients with Parkinson's disease, contributing to different non-motor phenotypes.


Assuntos
Agonistas de Dopamina/efeitos adversos , Sistema Límbico/cirurgia , Doença de Parkinson/psicologia , Doença de Parkinson/cirurgia , Síndrome de Abstinência a Substâncias/psicologia , Adulto , Idoso , Estimulação Encefálica Profunda/efeitos adversos , Denervação/psicologia , Depressão/etiologia , Depressão/psicologia , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Complicações Pós-Operatórias/induzido quimicamente , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/psicologia , Valor Preditivo dos Testes , Estudos Prospectivos , Síndrome de Abstinência a Substâncias/etiologia
14.
Mol Cell Proteomics ; 8(5): 946-58, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19164277

RESUMO

The striatum, a major component of the brain basal nuclei, is central for planning and executing voluntary movements and undergoes lesions in neurodegenerative disorders such as Huntington disease. To perform highly integrated tasks, the striatum relies on a complex network of communication within and between brain regions with a key role devoted to secreted molecules. To characterize the rat striatum secretome, we combined in vivo microdialysis together with proteomics analysis of trypsin digests and peptidomics studies of native fragments. This versatile approach, carried out using different microdialysis probes and mass spectrometer devices, allowed evidencing with high confidence the expression of 88 proteins and 100 processed peptides. Their secretory pathways were predicted by in silico analysis. Whereas high molecular weight proteins were mainly secreted by the classical mode (94%), low molecular weight proteins equally used classical and non-classical modes (53 and 47%, respectively). In addition, our results suggested alternative secretion mechanisms not predicted by bioinformatics tools. Based on spectrum counting, we performed a relative quantification of secreted proteins and peptides in both basal and neuronal depolarization conditions. This allowed detecting a series of neuropeptide precursors and a 6-fold increase for neurosecretory protein VGF and proenkephalin (PENK) levels. A focused investigation and a long peptide experiment led to the identification of new secreted non-opioid PENK peptides, referred to as PENK 114-133, PENK 239-260, and PENK 143-185. Moreover we showed that injecting synthetic PENK 114-133 and PENK 239-260 into the striatum robustly increased glutamate release in this region. Thus, the combination of microdialysis and versatile proteomics methods shed new light on the secreted protein repertoire and evidenced novel neuropeptide transmitters.


Assuntos
Microdiálise , Neostriado/metabolismo , Neuropeptídeos/análise , Proteômica , Via Secretória , Sequência de Aminoácidos , Aminoácidos/análise , Animais , Masculino , Espectrometria de Massas , Potenciais da Membrana , Dados de Sequência Molecular , Peso Molecular , Neuropeptídeos/química , Proteoma/análise , Proteoma/química , Ratos , Ratos Wistar
15.
J Neurosci ; 29(17): 5701-9, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19403836

RESUMO

The subthalamic nucleus (STN) is one of the principal input nuclei of the basal ganglia. Using electrophysiological techniques in anesthetized rats, we show that the STN becomes responsive to visual stimuli at short latencies when local disinhibitory injections are made into the midbrain superior colliculus (SC), an important subcortical visual structure. Significantly, only injections into the lateral, but not medial, deep layers of the SC were effective. Corresponding disinhibition of primary visual cortex also was ineffective. Complementary anatomical analyses revealed a strong, regionally specific projection from the deep layers of the lateral SC to neurons in rostral and dorsal sectors of the STN. Given the retinocentric organization of the SC, these results suggest that lower-field stimuli represented in the lateral colliculus have a direct means of communicating with the basal ganglia via the STN that is not afforded to visual events occurring in the upper visual field.


Assuntos
Tempo de Reação/fisiologia , Núcleo Subtalâmico/fisiologia , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Animais , Masculino , Mesencéfalo/fisiologia , Mesencéfalo/ultraestrutura , Estimulação Luminosa/métodos , Ratos , Núcleo Subtalâmico/ultraestrutura , Colículos Superiores/ultraestrutura , Córtex Visual/fisiologia , Córtex Visual/ultraestrutura , Vias Visuais/ultraestrutura
16.
J Neurochem ; 113(6): 1459-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20345766

RESUMO

The present experiments aimed at understanding the functional link between dopamine (DA) and glutamate (GLU) during the compensatory processes taking place after partial DA denervation. Lesion of the lateral part of substantia nigra in rats using 6-hydroxydopamine resulted in DA denervation of the lateral region of the ipsilateral caudate/putamen complex (CPc) whereas the medial CPc was spared. In vivo voltammetry revealed a large increase of extracellular dopamine (DA(ext)) in the medial CPc both ipsilateral and contralateral to the lesion. In addition, in vivo microdialysis and HPLC-ED revealed a concomitant increase of extracellular glutamate (GLU(ext)) in the ipsilateral medial CPc. Post-lesion chronic treatment with the putative neuroprotectors amantadine, memantine, and riluzole counteracted the tonic increases of DA(ext) and GLU(ext), revealing a possible role of GLU neurotransmission in the DA over-expression. Finally, acute low doses of GBR12909 had no effect on the DA(ext) in sham- operated animals, but dramatically increased DA(ext) in lesioned animals. The data suggest that a partial unilateral nigral lesion induces a bilateral increase of DA turn-over in the non-denervated striata through GLU afferences to the DA terminals.


Assuntos
Lesões Encefálicas/patologia , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Ácido Glutâmico/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Substância Negra , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Aminoácidos/metabolismo , Animais , Lesões Encefálicas/induzido quimicamente , Cromatografia Líquida de Alta Pressão/métodos , Dopaminérgicos/farmacologia , Eletroquimioterapia/métodos , Ácido Homovanílico/metabolismo , Masculino , Microdiálise/métodos , Oxidopamina , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Wistar
17.
Eur J Neurosci ; 32(3): 423-34, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20673310

RESUMO

Dyskinesia is a major side-effect of chronic l-DOPA administration, the reference treatment for Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN-HFS) alleviates parkinsonian motor symptoms and indirectly improves dyskinesia by decreasing the L-DOPA requirement. However, inappropriate stimulation can also trigger dyskinetic movements, in both human and rodents. We investigated whether STN-HFS-evoked forelimb dyskinesia involved changes in glutamatergic neurotransmission as previously reported for L-DOPA-induced dyskinesias, focusing on the role of NR2B-containing N-methyl-D-aspartate receptors (NR2B/NMDARs). We applied STN-HFS in normal rats at intensities above and below the threshold for triggering forelimb dyskinesia. Dyskinesiogenic STN-HFS induced the activation of NR2B (as assessed by immunodetection of the phosphorylated residue Tyr(1472)) in neurons of the subthalamic nucleus, entopeduncular nucleus, motor thalamus and forelimb motor cortex. The severity of STN-HFS-induced forelimb dyskinesia was decreased in a dose-dependent manner by systemic injections of CP-101,606, a selective blocker of NR2B/NMDARs, but was either unaffected or increased by the non-selective N-methyl-D-aspartate receptor antagonist, MK-801.


Assuntos
Discinesias/fisiopatologia , Membro Anterior/fisiopatologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Subtalâmico/fisiopatologia , Análise de Variância , Animais , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Discinesias/metabolismo , Estimulação Elétrica , Eletrodos Implantados , Membro Anterior/efeitos dos fármacos , Membro Anterior/metabolismo , Imuno-Histoquímica , Masculino , Córtex Motor/metabolismo , Neurônios/efeitos dos fármacos , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Estatísticas não Paramétricas , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Tálamo/metabolismo
18.
J Neurosci ; 28(38): 9575-84, 2008 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-18799689

RESUMO

Parkinson's disease (PD) patients express motor symptoms only after 60-80% striatal dopamine (DA) depletion. The presymptomatic phase of the disease may be sustained by biochemical modifications within the striatum. We used an appropriate specific 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model (Mounayar et al., 2007) to study the compensatory mechanisms operating in recovery from PD motor symptoms. We assessed the levels of DA and its metabolites (DOPAC, homovanillic acid), GABA, glutamate (Glu), serotonin (5-HT) and its metabolite (5HIAA) by repeated intracerebral microdialysis in awake animals before exposure to MPTP during full expression of the motor symptoms induced by MPTP and after recovery from these symptoms. Measurements were obtained from two functionally and anatomically different striatal areas: the associative-limbic territory and sensorimotor territory. Animals with motor symptoms displayed an extremely large decrease in levels of DA and its metabolites and an increase in Glu and GABA levels, as reported by other studies. However, we show here for the first time that serotonin levels increased in these animals. We found that increases in DA levels in the sensorimotor and/or associative-limbic territory and high levels of 5-HT and of its metabolite, 5HIAA, were associated with recovery from motor symptoms in this model. Determining whether similar changes in DA and 5-HT levels are involved in the compensatory mechanisms delaying the appearance of motor symptoms in the early stages of PD might make it possible to develop new treatment strategies for the disease.


Assuntos
Corpo Estriado/metabolismo , Líquido Extracelular/metabolismo , Neurotransmissores/metabolismo , Transtornos Parkinsonianos/metabolismo , Recuperação de Função Fisiológica/fisiologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Comportamento Animal/fisiologia , Chlorocebus aethiops , Corpo Estriado/química , Modelos Animais de Doenças , Dopamina/metabolismo , Regulação para Baixo/fisiologia , Líquido Extracelular/química , Ácido Glutâmico/metabolismo , Ácido Homovanílico/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Microdiálise , Movimento/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Serotonina/metabolismo , Regulação para Cima/fisiologia , Ácido gama-Aminobutírico/metabolismo
19.
Front Neurosci ; 13: 1014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680798

RESUMO

Brain metal homeostasis is altered in neurodegenerative diseases and the concentration, the localization and/or the chemical speciation of the elements can be modified compared to healthy individuals. These changes are often specific to the brain region affected by the neurodegenerative process. For example, iron concentration is increased in the substantia nigra (SN) of Parkinson's disease patients and iron redox reactions might be involved in the pathogenesis. The identification of the molecular basis behind metal dyshomeostasis in specific brain regions is the subject of intensive research and chemical element imaging methods are particularly useful to address this issue. Among the imaging modalities available, Synchrotron X-ray fluorescence (SXRF) and particle induced X-ray emission (PIXE) using focused micro-beams can inform about the quantitative distribution of metals in specific brain regions. Micro-X-ray absorption near edge spectroscopy (XANES) can in addition identify the chemical species of the elements, in particular their oxidation state. However, in order to bring accurate information about metal changes in specific brain areas, these chemical imaging methods must be correlated to brain tissue histology. We present a methodology to perform chemical element quantitative mapping and speciation on well-identified brain regions using correlative immunohistochemistry. We applied this methodology to the study of an animal model of Parkinson's disease, the 6-hydroxydopamine (6-OHDA) lesioned rat. Tyrosine hydroxylase immunohistochemical staining enabled to identify the SN pars compacta (SNpc) and pars reticulata (SNpr) as well as the ventral tegmental area (VTA). Using PIXE we found that iron content was higher respectively in the SNpr > SNpc > VTA, but was not statistically significantly modified by 6-OHDA treatment. In addition, micro-SXRF revealed the higher manganese content in the SNpc compared to the SNpr. Using micro-XANES we identified Fe oxidation states in the SNpr and SNpc showing a spectral similarity comparable to ferritin for all brain regions and exposure conditions. This study illustrates the capability to correlate immunohistochemistry and chemical element imaging at the brain region level and this protocol can now be widely applied to other studies of metal dyshomeostasis in neurology.

20.
Neuroscience ; 396: 175-186, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472430

RESUMO

Significant alterations in glutamatergic neurotransmission have been reported in major depressive disorder (MDD) that could underlie psychiatric traits. Studies were mainly interested in synaptic dysfunction in the prefrontal cortex, a key structure involved in depressive-like behavior, however hippocampus has been shown to be important in MDD. As cognitive deficits such as hippocampus-memory process were observed in MDD, we investigated in a mild hypoglutamatergic model behaviors related to depression and memory, synaptic transmission parameters and glutamatergic state specifically in the hippocampus. We thus characterized these phenotypes in adult male mice partially depleted in glutaminase type 1 or GLS1 (GLS1 HET), the enzyme responsible for glutamate synthesis in neurons, that we previously characterized as displaying moderate lower levels of glutamate in brain. We showed that GLS1 mutant mice display AMPA-R-mediated response deficits after prolonged repetitive stimulation with electrophysiological recording and inability to sustain glutamate release by microdialysis experiments with no consequences on behavioral spatial learning performances. However, their ability to escape from unpleasant but repeated escapable condition was attenuated whereas they were more immobile in the unescapable situation in the FST during re-test. These results show that GLS1 mutant mice display moderate impairments of hippocampal glutamatergic neurotransmission and moderate changes in adaptive behaviors that have been shown to participate to the development of depressive-like state.


Assuntos
Aprendizagem da Esquiva/fisiologia , Ácido Glutâmico/fisiologia , Glutaminase/fisiologia , Hipocampo/fisiologia , Resposta de Imobilidade Tônica/fisiologia , Aprendizagem Espacial/fisiologia , Transmissão Sináptica/fisiologia , Animais , Corticosterona/sangue , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Glutaminase/genética , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Microdiálise , Mutação , Restrição Física/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA