Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Sci Food Agric ; 102(7): 2885-2892, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34755340

RESUMO

BACKGROUND: Developing eco-friendly antioxidant and antimicrobial substances originating from biomass residues has recently attracted considerable interest. In this study, two lignosulfonates and various oxidized water-soluble lignins were investigated for their antioxidant properties, as assessed by ABTS, DPPH and Folin-Ciocalteu methods, and their antimicrobial activity against some bacterial strains responsible for human pathologies. RESULTS: The lignosulfonates showed the largest antiradical/antimicrobial capacity, whereas the other substrates were less effective. The observed antioxidant/antibacterial properties were positively correlated with lignin aromatic/phenolic content. The positive correlation between antiradical and antimicrobial activities suggests that lignin scavenging capacity was also involved in its antibacterial activity. A greater antimicrobial performance was generally observed against Gram-positive bacterial strains, and it was attributed to the intrinsic larger susceptibility of Gram-positive bacteria to lignin phenols. A significant though lesser inhibitory activity was also found against Escherichia coli. CONCLUSION: Our results confirmed the dependence of lignin antioxidant/antibacterial power on its extraction method and chemical structure, as well as on the type of bacterial strains. Identifying the relationship between lignin molecular composition and its antioxidant/antibacterial features represents an advance on the potential future use of renewable and eco-compatible lignin materials in nutraceutical, pharmaceutical and cosmetic sectors. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes , Lignina , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Bactérias , Bactérias Gram-Positivas , Humanos , Lignina/farmacologia , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Molecules ; 25(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630609

RESUMO

We prepared humo-pectic hydrogels through ionotropic gelation by crosslinking natural pectins of different degree of methyl-esterification with either humic substances (HS) extracted from cow manure compost or humic-like substances (HULIS) from depolymerized lignocellulose biorefinery waste. The hydrogels were characterized by solid-state 13C-NMR spectroscopy, scanning electron microscopy, spectroscopic magnetic resonance imaging and rheological analyses. Their ability to work as controlled release systems was tested by following the release kinetics of a previously incorporated model phenolic compound, like phloroglucinol. Our results indicated that the release properties of hydrogels were influenced by the molecular composition of HS and HULIS and by the different degrees of methyl-esterification of pectins. The hydrogel made by the high methoxyl pectin and HS showed the fastest rate of phloroglucinol release, and this was attributed not only to its morphological structure and crosslinking density but also to the least formation of ionic interactions between phloroglucinol and the polysaccharidic chains. Our study suggests that the efficiency of novel humo-pectic hydrogels as sustainable carriers of agroproducts to crops is related to a careful choice of the characteristics of their components.


Assuntos
Substâncias Húmicas/análise , Hidrogéis/química , Esterco/análise , Pectinas/química , Reologia , Compostagem , Esterificação , Concentração de Íons de Hidrogênio , Cinética , Floroglucinol/metabolismo , Polissacarídeos/metabolismo
3.
Int J Mol Sci ; 18(2)2017 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165411

RESUMO

Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus, could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.). In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR) and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR) to analyse the chemical structure, and thermogravimetric analysis (TGA) for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p-coumarate (PCA), ferulate (FA) and cinnamyl aldehyde end-groups (J) were only detected in wheat isolated lignin.


Assuntos
Fabaceae/química , Lignina/química , Lignina/isolamento & purificação , Poaceae/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
4.
Molecules ; 20(11): 19958-70, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26556330

RESUMO

The molecular composition of water-soluble lignins isolated from four non-food bioenergy crops (cardoon CAR, eucalyptus EUC, and two black poplars RIP and LIM) was characterized in detail, and their potential bioactivity towards maize germination and early growth evaluated. Lignins were found to not affect seed germination rates, but stimulated the maize seedling development, though to a different extent. RIP promoted root elongation, while CAR only stimulated the length of lateral seminal roots and coleoptile, and LIM improved only the coleoptile development. The most significant bioactivity of CAR was related to its large content of aliphatic OH groups, C-O carbons and lowest hydrophobicity, as assessed by (31)P-NMR and (13)C-CPMAS-NMR spectroscopies. Less bioactive RIP and LIM lignins were similar in composition, but their stimulation of maize seedling was different. This was accounted to their diverse content of aliphatic OH groups and S- and G-type molecules. The poorest bioactivity of the EUC lignin was attributed to its smallest content of aliphatic OH groups and largest hydrophobicity. Both these features may be conducive of a EUC conformational structure tight enough to prevent its alteration by organic acids exuded from vegetal tissues. Conversely the more labile conformational arrangements of the other more hydrophilic lignin extracts promoted their bioactivity by releasing biologically active molecules upon the action of exuded organic acids. Our findings indicate that water-soluble lignins from non-food crops may be effectively used as plant biostimulants, thus contributing to increase the economic and ecological liability of bio-based industries.


Assuntos
Produtos Agrícolas/química , Lignina/química , Lignina/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sementes/efeitos dos fármacos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
5.
Int J Biol Macromol ; 262(Pt 2): 129966, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320639

RESUMO

A hydrotropic solution of maleic acid (MA) was exploited to fractionate giant reed (AD) and eucalypt (EUC). The pre-treatment was successful for AD, while it was unsatisfactory for EUC, likely due to unoptimized reaction conditions. Interestingly, lignin nanoparticles (LNP) were produced via spontaneous aggregation following spent liquor dilution. LNP were studied by a plethora of analytical techniques, such as thermogravimetry, electron microscopy, and Nuclear Magnetic Resonance spectroscopy (NMR). Notwithstanding LNP from both AD and EUC showed similar thermal behaviour and morphology, a greater content of aliphatic hydroxyl, carboxyl, guaiacyl and p-hydroxyphenyl moieties was reported for AD-LNP, whereas EUC-LNP had a larger amount of syringyl groups and a higher S/G ratio. Also, the 1H-DOSY NMR indicated the lower size of AD-LNP. Moreover, the LNP were found to negatively impact on the development of several human or plant pathogens, and their bioactivity was related to the occurrence of guaiacyl and p-hydroxyphenyl moieties and a lower the LNP size. We therefore found that MA delignification allows both to achieve high delignification efficiency and to obtain LNP with promising antibacterial effect. Such LNP may help counteracting the antibiotics resistance and sustain the quest for finding sustainable agrochemicals.


Assuntos
Lignina , Nanopartículas , Humanos , Lignina/química , Espectroscopia de Ressonância Magnética
6.
PLoS One ; 18(3): e0281631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893132

RESUMO

Helicobacter pylori (H. pylori) is a common human pathogen causing inflammation. Recent studies have suggested a sophisticated interplay between mitochondria, innate immunity and inflammatory response, thus proposing mitochondrial disfunction as the hallmark of severe inflammatory disorders. In this study, humic substances isolated from composted fennel residues (HS-FEN) were tested as potential therapeutical strategy to restore the mitochondrial physiology and control the inflammation associated with H. pylori infection. The molecular features of HS-FEN were characterized by infrared spectrometry, thermochemolysis-GC/MS, NMR spectroscopy, and high-performance size-exclusion chromatography (HPSEC), which revealed the presence of aromatic polyphenolic components arranged in a rather stable conformation. In vitro results showed antioxidant and anti-inflammatory properties of HS-FEN, that was found to increase the expression level of OPA-1 and SOD-2 genes and in AGS cells stimulated with H. pylori culture filtrate (Hpcf) and concomitantly decrease the expression level of Drp-1 gene and IL-12, IL-17 and G-CSF proteins. The hydrophobic features of HS, their conformational arrangement and large content of bioactive molecules may explain the beneficial effects of HS-FEN, that may potentially become an interesting source of anti-inflammatory agents capable to counteract or prevent the H. pylori-related inflammatory disorders.


Assuntos
Foeniculum , Infecções por Helicobacter , Helicobacter pylori , Humanos , Substâncias Húmicas , Infecções por Helicobacter/complicações , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo
7.
Microbiome ; 11(1): 205, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37705113

RESUMO

BACKGROUND: In the last few years, considerable attention has been focused on the plastic-degrading capability of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste management. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect gut microbiome to identify genes with plastic-degrading potential is still lacking. RESULTS: In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been considered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning electron microscopy and 1H nuclear magnetic resonance analyses on plastics. CONCLUSIONS: In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae as "bioincubators" to isolate microbial strains and enzymes for the development of innovative plastic biodegradation strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pioneering synthetic biology approaches. Video Abstract.


Assuntos
Dípteros , Microbioma Gastrointestinal , Animais , Larva , Microbioma Gastrointestinal/genética , Plásticos , RNA Ribossômico 16S/genética
8.
Sci Rep ; 12(1): 2152, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140310

RESUMO

Long-term exposure to air pollution has been associated with the development of some inflammatory processes related to skin. The goal of modern medicine is the development of new products with antiflammatory action deriving from natural sources to improve environmental and economic sustainability. In this study, two different humic acids (HA) were isolated from from lignite (HA-LIG) and composted artichoke wastes (HA-CYN) and characterized by infrared spectrometry, NMR spectroscopy, thermochemolysis-GC/MS, and high-performance size-exclusion chromatography (HPSEC), while their antiflammatory activity was evaluated on HaCaT cells. Spectroscopic results showing the predominance of apolar aliphatic and aromatic components in HA-LIG, whereas HA-CYN revealed a presence of polysaccharides and polyphenolic lignin residues. The HA application on human keratinocyte pre-treated with Urban Dust revealed a general increase of viability suggesting a protective effect of humic matter due to the content of aromatic, phenolic and lignin components. Conversely, the gene expression of IL-6 and IL-1ß cytokines indicated a significant decrease after application of HA-LIG, thus exhibiting a greater antiflammatory power than HA-CYN. The specific combination of HA protective hydrophobic components, viable conformational arrangements, and content of bioactive molecules, suggests an innovative applicability of humic matter in dermatology as skin protectors from environmental irritants and as antiflammatory agents.


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Carvão Mineral , Compostagem , Substâncias Húmicas , Anti-Inflamatórios não Esteroides/química , Sobrevivência Celular , Cromatografia em Gel , Carvão Mineral/análise , Cromatografia Gasosa-Espectrometria de Massas , Células HaCaT , Humanos , Substâncias Húmicas/análise , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Queratinócitos/citologia , Espectroscopia de Ressonância Magnética
9.
Front Plant Sci ; 11: 581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528492

RESUMO

Humic-like substances (HLSs) isolated by alkaline oxidative hydrolysis from lignin-rich agro-industrial residues have been shown to exert biostimulant activity toward maize (Zea mays L.) germination and early growth. The definition of a quantitative structure-activity relationship (QSAR) between HLS and their bioactivity could be useful to predict their biological properties and tailor plant biostimulants for specific agronomic and industrial uses. Here, we created several projection on latent structure (PLS) regression by using published analytical data on the molecular composition of lignin-derived HLS obtained by both 13C-CPMAS-NMR spectra directly on samples and 31P-NMR spectra after derivatization of hydroxyl functions with a P-containing reagent (2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane). These spectral data were used to model the effect of HLS on the elongation of primary root, lateral seminal roots, total root apparatus, and coleoptile of maize. The 13C-CPMAS-NMR data suggested that methoxyl and aromatic moieties positively affected plant growth, while the carboxyl/esterified functions showed a negative impact on the overall seedling development. Alkyl C seems to promote Col elongation while concomitantly reducing that of the root system. Additionally, 31P-NMR-derived spectra revealed that the elongation of roots and Col were enhanced by the occurrence of aliphatic hydroxyl groups, and guaiacyl and p-Hydroxyphenyl lignin monomers. The PLS models based on raw dataset from 13C-CPMAS-NMR spectra explained more than 74% of the variance for the length of lateral seminal roots, total root system and coleoptile, while other parameters derived from 13C-CPMAS-NMR spectra, namely the Hydrophobicity and Hydrophilicity of materials were necessary to explain 83% of the variance of the primary root length. The results from 31P-NMR spectra explained the observed biological variance by 90, 96, 96, and 93% for the length of primary root, lateral seminal roots, total root system and coleoptile, respectively. This work shows that different NMR spectroscopy techniques can be used to build up PLS models which can predict the bioactivity of lignin-derived HLS toward early growth of maize plants. The established QSAR may also be exploited to enhance by chemical techniques the bioactive properties of HLS and enhance their plant stimulation capacity.

10.
PLoS One ; 14(6): e0219099, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31247049

RESUMO

The changes in soil organic matter composition induced by anthropogenic factors is a topic of great interest for the soil scientists. The objective of this work was to identify possible structural changes in humic molecules caused by a 2-year rotation of durum wheat with faba bean, lasted for a decade, and conducted with different agricultural practices in a Mediterranean soil. Humic acids (HA) were extracted at three depths (0-30, 30-60 and 60-90 cm) from a Mediterranean soil subjected to different tillage (no tillage, minimum tillage and conventional tillage), crops (faba bean and wheat), and fertilization. The changes in HA quality were assessed by several chemical (ash, yield and elemental analysis) and spectroscopic techniques (solid-state 13C nuclear magnetic resonance, Fourier transform infrared and fluorescence). The results suggest that the different agronomic practices strongly affected the quality of HA. Smaller but more aromatic molecules were observed with depth, while the fertilization induced the formation of simpler and less aromatic molecules due to the enhanced decomposition processes. Under no tillage, more stable humic molecules were observed due to the less soil aeration, while under conventional tillage larger and more aromatic molecules were obtained. Compared to wheat, more aromatic and more oxidized but less complex molecules were observed after faba bean crop. The inorganic fertilization accelerates the decomposition of organic substances rather than their stabilization. At the end of each crop cycle, humic matter of different quality was isolated and this confirms the importance of the rotation practice to guarantee a diversification of the soil organic matter with time. Finally, no tillage induces the formation of more stable humic matter.


Assuntos
Produção Agrícola/métodos , Produtos Agrícolas/química , Substâncias Húmicas/análise , Solo/química , Ciclo do Carbono , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes/análise , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Triticum/química , Triticum/crescimento & desenvolvimento , Vicia faba/química , Vicia faba/crescimento & desenvolvimento
11.
Sci Total Environ ; 645: 411-418, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30025241

RESUMO

Lignosulfonates are important by-products of the paper industry and may be transformed into different commodities. We studied the molecular properties of ammonium (LS-AM) and calcium Lignosulfonates (LS-C) and evaluated their bioactivity towards the early development of maize plantlets. The FT-IR, 13C NMR and 1H-13C-HSQC-NMR spectra showed that the two lignosulfonates varied in hydroxyl, sulfonate and phenolic content, while DOSY-NMR spectroscopy suggested a similar diffusivity. High Performance Size Exclusion Chromatography (HPSEC) was used to simulate the effects of root-exuded acids and describe the conformational dynamics of both LS substrates in acidic aqueous solutions. This technique showed that LS-C was stabilized by the divalent Ca2+ counterion, thus showing a greater conformational stability than LS-AM, whose components could not be as efficiently aggregated by the monovalent NH4+ counter-ion. The plant bioassays revealed that LS-AM enhanced the elongation of the root system, whereas LS-C significantly increased both total and shoot plant weights. We concluded that the lignosulfonate bioactivity on plant growth depended on the applied concentrations, their molecular properties and conformational stability.


Assuntos
Compostos de Amônio/química , Cálcio/química , Lignina/análogos & derivados , Eliminação de Resíduos Líquidos/métodos , Cromatografia em Gel , Resíduos Industriais , Lignina/química , Papel , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Sci Total Environ ; 576: 858-867, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27833063

RESUMO

It is not yet clear whether the carbon released from biochar in the soil solution stimulates biological activities. Soluble fractions (AQU) from wheat and maize biochars, whose molecular content was thoroughly characterized by FTIR, 13C and 1H NMR, and high-resolution ESI-IT-TOF-MS, were separated in dilute acidic solution to simulate soil rhizospheric conditions and their effects evaluated on maize seeds germination activity. Elongation of maize-seeds coleoptile was significantly promoted by maize biochar AQU, whereas it was inhibited by wheat biochar AQU. Both AQU fractions contained relatively small heterocyclic nitrogen compounds, whose structures were accounted by their spectroscopic properties. Point-of-Zero-Charge (PZC) values and van Krevelen plots of identified masses of soluble components suggested that the dissolved carbon from maize biochar behaved as humic-like supramolecular material capable to adhere to seedlings and deliver bioactive molecules. These findings contribute to understand the biostimulation potential of biochars from crop biomasses when applied in agricultural production.


Assuntos
Carvão Vegetal/química , Germinação/efeitos dos fármacos , Zea mays/fisiologia , Sementes/efeitos dos fármacos , Sementes/fisiologia , Solo
13.
J Hazard Mater ; 261: 55-62, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23911828

RESUMO

Remediation of two polluted soils from a northern Italian industrial site heavily contaminated with organic contaminants was attempted here by subjecting soils first to addition with an exogenous humic acid (HA), and, then, to an oxidation reaction catalyzed by a water-soluble iron-porphyrin (FeP). An expected decrease of detectable organic pollutants (>50%) was already observed when soils were treated only with the H2O2 oxidant. This reduction was substantially enhanced when oxidation was catalyzed by iron-porphyrin (FeP+H2O2) and the largest effect was observed for the most highly polluted soil. Even more significant was the decrease in detectable pollutants (70-90%) when soils were first amended with HA and then subjected to the FeP+H2O2 treatment. This reduction in extractable pollutants after the combined HA+FeP+H2O2 treatment was due to formation of covalent CC and COC bonds between soil contaminants and amended humic molecules. Moreover, the concomitant detection of condensation products in soil extracts following FeP addition confirmed the occurrence of free-radical coupling reactions catalyzed by FeP. These findings indicate that a combined technique based on the action of both humic matter and a metal-porhyrin catalyst, may become useful to quantitatively reduce the toxicity of heavily contaminated soils and prevent the environmental transport of pollutants.


Assuntos
Recuperação e Remediação Ambiental/métodos , Peróxido de Hidrogênio/química , Metaloporfirinas/química , Oxidantes/química , Poluentes do Solo/química , Biomimética , Catálise , Resíduos Industriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA