Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Gastroenterology ; 157(6): 1646-1659.e11, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31442435

RESUMO

BACKGROUND & AIMS: The histone lysine demethylase 3A (KDM3A) demethylates H3K9me1 and H3K9Me2 to increase gene transcription and is upregulated in tumors, including pancreatic tumors. We investigated its activities in pancreatic cancer cell lines and its regulation of the gene encoding doublecortin calmodulin-like kinase 1 (DCLK1), a marker of cancer stem cells. METHODS: We knocked down KDM3A in MiaPaCa-2 and S2-007 pancreatic cancer cell lines and overexpressed KDM3A in HPNE cells (human noncancerous pancreatic ductal cell line); we evaluated cell migration, invasion, and spheroid formation under hypoxic and normoxic conditions. Nude mice were given orthotopic injections of S2-007 cells, with or without (control) knockdown of KDM3A, and HPNE cells, with or without (control) overexpression of KDM3A; tumor growth was assessed. We analyzed pancreatic tumor tissues from mice and pancreatic cancer cell lines by immunohistochemistry and immunoblotting. We performed RNA-sequencing analysis of MiaPaCa-2 and S2-007 cells with knockdown of KDM3A and evaluated localization of DCLK1 and KDM3A by immunofluorescence. We analyzed the cancer genome atlas for levels of KDM3A and DCLK1 messenger RNA in human pancreatic ductal adenocarcinoma (PDAC) tissues and association with patient survival time. RESULTS: Levels of KDM3A were increased in human pancreatic tumor tissues and cell lines, compared with adjacent nontumor pancreatic tissues, such as islet and acinar cells. Knockdown of KDM3A in S2-007 cells significantly reduced colony formation, invasion, migration, and spheroid formation, compared with control cells, and slowed growth of orthotopic tumors in mice. We identified KDM3A-binding sites in the DCLK1 promoter; S2-007 cells with knockdown of KDM3A had reduced levels of DCLK1. HPNE cells that overexpressed KDM3A formed foci and spheres in culture and formed tumors and metastases in mice, whereas control HPNE cells did not. Hypoxia induced sphere formation and increased levels of KDM3A in S2-007 cells and in HPNE cells that overexpressed DCLK1, but not control HPNE cells. Levels of KDM3A and DCLK1 messenger RNA were higher in human PDAC than nontumor pancreatic tissues and correlated with shorter survival times of patients. CONCLUSIONS: We found human PDAC samples and pancreatic cancer cell lines to overexpress KDM3A. KDM3A increases expression of DCLK1, and levels of both proteins are increased in human PDAC samples. Knockdown of KDM3A in pancreatic cancer cell lines reduced their invasive and sphere-forming activities in culture and formation of orthotopic tumors in mice. Hypoxia increased expression of KDM3A in pancreatic cancer cells. Strategies to disrupt this pathway might be developed for treatment of pancreatic cancer.


Assuntos
Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Metilação de DNA , Conjuntos de Dados como Assunto , Quinases Semelhantes a Duplacortina , Feminino , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Análise de Sobrevida , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Carcinog ; 58(8): 1400-1409, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020708

RESUMO

We previously reported that ionizing radiation (IR) mediates cell death through the induction of CUGBP elav-like family member 2 (CELF2), a tumor suppressor. CELF2 is an RNA binding protein that modulates mRNA stability and translation. Since IR induces autophagy, we hypothesized that CELF2 regulates autophagy-mediated colorectal cancer (CRC) cell death. For clinical relevance, we determined CELF2 levels in The Cancer Genome Atlas (TCGA). Role of CELF2 in radiation response was carried out in CRC cell lines by immunoblotting, immunofluorescence, autophagic vacuole analyses, RNA stability assay, quantitative polymerase chain reaction and electron microscopy. In vivo studies were performed in a xenograft tumor model. TCGA analyses demonstrated that compared to normal tissue, CELF2 is expressed at significantly lower levels in CRC, and is associated with better overall 5-year survival in patients receiving radiation. Mechanistically, CELF2 increased levels of critical components of the autophagy cascade including Beclin-1, ATG5, and ATG12 by modulating mRNA stability. CELF2 also increased autophagic flux in CRC. IR significantly induced autophagy in CRC which correlates with increased levels of CELF2 and autophagy associated proteins. Silencing CELF2 with siRNA, mitigated IR induced autophagy. Moreover, knockdown of CELF2 in vivo conferred tumor resistance to IR. These studies elucidate an unrecognized role for CELF2 in inducing autophagy and potentiating the effects of radiotherapy in CRC.


Assuntos
Autofagia/fisiologia , Proteínas CELF/metabolismo , Sobrevivência Celular/efeitos da radiação , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteína 12 Relacionada à Autofagia/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Proteínas CELF/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células HCT116 , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Proteínas do Tecido Nervoso/genética , Prognóstico , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Radiação Ionizante , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA