Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Neurooncol ; 138(3): 557-569, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29525972

RESUMO

A novel glucose transporter, the sodium glucose cotransporter 2 (SGLT2), has been demonstrated to contribute to the demand for glucose by pancreatic and prostate tumors, and its functional activity has been imaged using a SGLT specific PET imaging probe, α-methyl-4-[F-18]fluoro-4-deoxy-D-glucopyaranoside (Me-4FDG). In this study, Me-4FDG PET was extended to evaluate patients with high-grade astrocytic tumors. Me-4FDG PET scans were performed in four patients diagnosed with WHO Grade III or IV astrocytomas and control subjects, and compared with 2-deoxy-2-[F-18]fluoro-D-glucose (2-FDG) PET and magnetic resonance imaging (MRI) of the same subjects. Immunocytochemistry was carried out on Grade IV astrocytomas to determine the cellular location of SGLT proteins within the tumors. Me-4FDG retention was pronounced in astrocytomas in dramatic contrast to the lack of uptake into the normal brain, resulting in a high signal-to-noise ratio. Macroscopically, the distribution of Me-4FDG within the tumors overlapped with that of 2-FDG uptake and tumor definition using contrast-enhanced MRI images. Microscopically, the SGLT2 protein was found to be expressed in neoplastic glioblastoma cells and endothelial cells of the proliferating microvasculature. This preliminary study shows that Me-4FDG is a highly sensitive probe for visualization of high-grade astrocytomas by PET. The distribution of Me-4FDG within tumors overlapped that for 2-FDG, but the absence of background brain Me-4FDG resulted in superior imaging sensitivity. Furthermore, the presence of SGLT2 protein in astrocytoma cells and the proliferating microvasculature may offer a novel therapy using the SGLT2 inhibitors already approved by the FDA to treat type 2 diabetes mellitus.


Assuntos
Astrocitoma/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Glucosídeos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Transportador 2 de Glucose-Sódio/metabolismo , Adulto , Idoso , Astrocitoma/metabolismo , Astrocitoma/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Microvasos/metabolismo , Microvasos/patologia , Pessoa de Meia-Idade , Gradação de Tumores , Dados Preliminares
2.
Proc Natl Acad Sci U S A ; 112(30): E4111-9, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26170283

RESUMO

Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival. Three experimental approaches were used: (i) immunohistochemical mapping of SGLT1 and SGLT2 distribution in tumors; (ii) measurement of glucose uptake in fresh isolated tumors using an SGLT-specific radioactive glucose analog, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me4FDG), which is not transported by GLUTs; and (iii) measurement of in vivo SGLT activity in mouse models of pancreatic and prostate cancer using Me4FDG-PET imaging. We found that SGLT2 is functionally expressed in pancreatic and prostate adenocarcinomas, and provide evidence that SGLT2 inhibitors block glucose uptake and reduce tumor growth and survival in a xenograft model of pancreatic cancer. We suggest that Me4FDG-PET imaging may be used to diagnose and stage pancreatic and prostate cancers, and that SGLT2 inhibitors, currently in use for treating diabetes, may be useful for cancer therapy.


Assuntos
Neoplasias Pancreáticas/metabolismo , Neoplasias da Próstata/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Adenocarcinoma/metabolismo , Animais , Transporte Biológico , Feminino , Radioisótopos de Flúor/química , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucosídeos/química , Humanos , Imuno-Histoquímica , Rim/metabolismo , Masculino , Camundongos , Necrose , Transplante de Neoplasias , Neoplasias Pancreáticas/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose
3.
J Am Soc Nephrol ; 28(3): 802-810, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27620988

RESUMO

Kidneys contribute to glucose homeostasis by reabsorbing filtered glucose in the proximal tubules via sodium-glucose cotransporters (SGLTs). Reabsorption is primarily handled by SGLT2, and SGLT2-specific inhibitors, including dapagliflozin, canagliflozin, and empagliflozin, increase glucose excretion and lower blood glucose levels. To resolve unanswered questions about these inhibitors, we developed a novel approach to map the distribution of functional SGLT2 proteins in rodents using positron emission tomography with 4-[18F]fluoro-dapagliflozin (F-Dapa). We detected prominent binding of intravenously injected F-Dapa in the kidney cortexes of rats and wild-type and Sglt1-knockout mice but not Sglt2-knockout mice, and injection of SGLT2 inhibitors prevented this binding. Furthermore, imaging revealed only low levels of F-Dapa in the urinary bladder, even after displacement of kidney binding with dapagliflozin. Microscopic ex vitro autoradiography of kidney showed F-Dapa binding to the apical surface of early proximal tubules. Notably, in vivo imaging did not show measureable specific binding of F-Dapa in heart, muscle, salivary glands, liver, or brain. We propose that F-Dapa is freely filtered by the kidney, binds to SGLT2 in the apical membranes of the early proximal tubule, and is subsequently reabsorbed into blood. The high density of functional SGLT2 transporters detected in the apical membrane of the proximal tubule but not detected in other organs likely accounts for the high kidney specificity of SGLT2 inhibitors. Overall, these data are consistent with data from clinical studies on SGLT2 inhibitors and provide a rationale for the mode of action of these drugs.


Assuntos
Compostos Benzidrílicos/metabolismo , Glucosídeos/metabolismo , Túbulos Renais Proximais/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
4.
Mol Cell ; 29(6): 755-66, 2008 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-18374649

RESUMO

A key strategy to achieve regulated gene expression in higher eukaryotes is to prevent illegitimate signal-independent activation by imposing robust control on the dismissal of corepressors. Here, we report that many signaling pathways, including Notch, NF-kappaB, and nuclear receptor ligands, are subjected to a dual-repression "checkpoint" based on distinct corepressor complexes. Gene activation requires the release of both CtBP1/2- and NCoR/SMRT-dependent repression, through the coordinate action of two highly related exchange factors, the transducer beta-like proteins TBL1 and TBLR1, that license ubiquitylation and degradation of CtBP1/2 and NCoR/SMRT, respectively. Intriguingly, their function and differential specificity reside in only five specific Ser/Thr phosphorylation site differences, regulated by direct phosphorylation at the level of the promoter, as exemplified by the role of PKCdelta in TBLR1-dependent dismissal of NCoR. Thus, our data reveal a strategy of dual-factor repression checkpoints, in which dedicated exchange factors serve as sensors for signal-specific dismissal of distinct corepressors, with specificity imposed by upstream signaling pathways.


Assuntos
Oxirredutases do Álcool/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Transducina/metabolismo , Animais , Neoplasias da Mama , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Correpressor 2 de Receptor Nuclear , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Repressoras/genética , Ativação Transcricional , Ubiquitina/metabolismo
5.
BMC Genomics ; 16: 367, 2015 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-25956916

RESUMO

BACKGROUND: Estrogens play an important role in breast cancer (BC) development and progression; when the two isoforms of the estrogen receptor (ERα and ERß) are co-expressed each of them mediate specific effects of these hormones in BC cells. ERß has been suggested to exert an antagonist role toward the oncogenic activities of ERα, and for this reason it is considered an oncosuppressor. As clinical evidence regarding a prognostic role for this receptor subtype in hormone-responsive BC is still limited and conflicting, more knowledge is required on the biological functions of ERß in cancer cells. We have previously described the ERß and ERα interactomes from BC cells, identifying specific and distinct patterns of protein interactions for the two receptors. In particular, we identified factors involved in mRNA splicing and maturation as important components of both ERα and ERß pathways. Guided by these findings, here we performed RNA sequencing to investigate in depth the differences in the early transcriptional events and RNA splicing patterns induced by estradiol in cells expressing ERα alone or ERα and ERß. RESULTS: Exon skipping was the most abundant splicing event in the post-transcriptional regulation by estradiol. We identified several splicing events induced by ERα alone and by ERα+ERß, demonstrating for the first time that ERß significantly affects estrogen-induced splicing in BC cells, as revealed by modification of a subset of ERα-dependent splicing by ERß, as well as by the presence of splicing isoforms only in ERß+cells. In particular, we observed that ERß+BC cell lines exhibited around 2-fold more splicing events than the ERß- cells. Interestingly, we identified putative direct targets of ERß-mediated alternative splicing by correlating the genomic locations of ERß and ERα binding sites with estradiol-induced differential splicing in the corresponding genes. CONCLUSIONS: Taken together, these results demonstrate that ERß significantly affects estrogen-induced early transcription and mRNA splicing in hormone-responsive BC cells, providing novel information on the biological role of ERß in these tumors.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Neoplasias da Mama/patologia , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/deficiência , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células MCF-7 , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Análise de Sequência de RNA
6.
Cancer Res ; 84(2): 305-327, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37934116

RESUMO

Increased utilization of glucose is a hallmark of cancer. Sodium-glucose transporter 2 (SGLT2) is a critical player in glucose uptake in early-stage and well-differentiated lung adenocarcinoma (LUAD). SGLT2 inhibitors, which are FDA approved for diabetes, heart failure, and kidney disease, have been shown to significantly delay LUAD development and prolong survival in murine models and in retrospective studies in diabetic patients, suggesting that they may be repurposed for lung cancer. Despite the antitumor effects of SGLT2 inhibition, tumors eventually escape treatment. Here, we studied the mechanisms of resistance to glucose metabolism-targeting treatments. Glucose restriction in LUAD and other tumors induced cancer cell dedifferentiation, leading to a more aggressive phenotype. Glucose deprivation caused a reduction in alpha-ketoglutarate (αKG), leading to attenuated activity of αKG-dependent histone demethylases and histone hypermethylation. The dedifferentiated phenotype depended on unbalanced EZH2 activity that suppressed prolyl-hydroxylase PHD3 and increased expression of hypoxia-inducible factor 1α (HIF1α), triggering epithelial-to-mesenchymal transition. Finally, a HIF1α-dependent transcriptional signature of genes upregulated by low glucose correlated with prognosis in human LUAD. Overall, this study furthers current knowledge of the relationship between glucose metabolism and cell differentiation in cancer, characterizing the epigenetic adaptation of cancer cells to glucose deprivation and identifying targets to prevent the development of resistance to therapies targeting glucose metabolism. SIGNIFICANCE: Epigenetic adaptation allows cancer cells to overcome the tumor-suppressive effects of glucose restriction by inducing dedifferentiation and an aggressive phenotype, which could help design better metabolic treatments.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Glucose/metabolismo , Transportador 2 de Glucose-Sódio , Estudos Retrospectivos , Neoplasias Pulmonares/genética
7.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778362

RESUMO

Increased utilization of glucose is a hallmark of cancer. Several studies are investigating the efficacy of glucose restriction by glucose transporter blockade or glycolysis inhibition. However, the adaptations of cancer cells to glucose restriction are unknown. Here, we report the discovery that glucose restriction in lung adenocarcinoma (LUAD) induces cancer cell de-differentiation, leading to a more aggressive phenotype. Glucose deprivation causes a reduction in alpha-ketoglutarate (αKG), leading to attenuated activity of αKG-dependent histone demethylases and histone hypermethylation. We further show that this de-differentiated phenotype depends on unbalanced EZH2 activity, causing inhibition of prolyl-hydroxylase PHD3 and increased expression of hypoxia inducible factor 1α (HIF1α), triggering epithelial to mesenchymal transition. Finally, we identified an HIF1α-dependent transcriptional signature with prognostic significance in human LUAD. Our studies further current knowledge of the relationship between glucose metabolism and cell differentiation in cancer, characterizing the epigenetic adaptation of cancer cells to glucose deprivation and identifying novel targets to prevent the development of resistance to therapies targeting glucose metabolism.

8.
bioRxiv ; 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233569

RESUMO

To date, there is no effective oral antiviral against SARS-CoV-2 that is also anti-inflammatory. Herein, we show that the mitochondrial antioxidant mitoquinone/mitoquinol mesylate (Mito-MES), a dietary supplement, has potent antiviral activity against SARS-CoV-2 and its variants of concern in vitro and in vivo . Mito-MES had nanomolar in vitro antiviral potency against the Beta and Delta SARS-CoV-2 variants as well as the murine hepatitis virus (MHV-A59). Mito-MES given in SARS-CoV-2 infected K18-hACE2 mice through oral gavage reduced viral titer by nearly 4 log units relative to the vehicle group. We found in vitro that the antiviral effect of Mito-MES is attributable to its hydrophobic dTPP+ moiety and its combined effects scavenging reactive oxygen species (ROS), activating Nrf2 and increasing the host defense proteins TOM70 and MX1. Mito-MES was efficacious reducing increase in cleaved caspase-3 and inflammation induced by SARS-CoV2 infection both in lung epithelial cells and a transgenic mouse model of COVID-19. Mito-MES reduced production of IL-6 by SARS-CoV-2 infected epithelial cells through its antioxidant properties (Nrf2 agonist, coenzyme Q10 moiety) and the dTPP moiety. Given established safety of Mito-MES in humans, our results suggest that Mito-MES may represent a rapidly applicable therapeutic strategy that can be added in the therapeutic arsenal against COVID-19. Its potential long-term use by humans as diet supplement could help control the SARS-CoV-2 pandemic, especially in the setting of rapidly emerging SARS-CoV-2 variants that may compromise vaccine efficacy. One-Sentence Summary: Mitoquinone/mitoquinol mesylate has potent antiviral and anti-inflammatory activity in preclinical models of SARS-CoV-2 infection.

9.
Cancers (Basel) ; 13(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34298698

RESUMO

Metabolic reprogramming is a well described hallmark of cancer. Oncogenic stimuli and the microenvironment shape the metabolic phenotype of cancer cells, causing pathological modifications of carbohydrate, amino acid and lipid metabolism that support the uncontrolled growth and proliferation of cancer cells. Conversely, metabolic alterations in cancer can drive changes in genetic programs affecting cell proliferation and differentiation. In recent years, the role of non-coding RNAs in metabolic reprogramming in cancer has been extensively studied. Here, we review this topic, with a focus on glucose, glutamine, and lipid metabolism and point to some evidence that metabolic alterations occurring in cancer can drive changes in non-coding RNA expression, thus adding an additional level of complexity in the relationship between metabolism and genetic programs in cancer cells.

10.
Cancers (Basel) ; 13(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34298808

RESUMO

Recent advances in immunotherapy have reshaped the clinical management of lung cancer, and immune checkpoint inhibitors (ICIs) are now first-line treatment for advanced lung cancer. However, the majority of patients do not respond to ICIs as single agents, and many develop resistance after initial responses. Therefore, there is urgent need to improve the current ICI strategies. Murine models currently available for pre-clinical studies have serious limitations for evaluating novel immunotherapies. GEMMs are reliable and predictable models driven by oncogenic mutations mirroring those found in cancer patients. However, they lack the mutational burden of human cancers and thus do not elicit proper immune surveillance. Carcinogen-induced models are characterized by mutational burden that more closely resembles human cancer, but they often require extremely long experimental times with inconsistent results. Here, we present a hybrid model in which genetically engineered mice are exposed to the carcinogen N-Methyl-N-Nitrosourea (MNU) to increase tumor mutational burden (TMB), induce early-stage immune responses, and enhance susceptibility to ICIs. We anticipate that this model will be useful for pre-clinical evaluation of novel immunotherapies.

11.
Biomolecules ; 10(6)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517099

RESUMO

Increased glucose uptake is a known hallmark of cancer. Cancer cells need glucose for energy production via glycolysis and the tricarboxylic acid cycle, and also to fuel the pentose phosphate pathway, the serine biosynthetic pathway, lipogenesis, and the hexosamine pathway. For this reason, glucose transport inhibition is an emerging new treatment for different malignancies, including lung cancer. However, studies both in animal models and in humans have shown high levels of heterogeneity in the utilization of glucose and other metabolites in cancer, unveiling a complexity that is difficult to target therapeutically. Here, we present an overview of different levels of heterogeneity in glucose uptake and utilization in lung cancer, with diagnostic and therapeutic implications.


Assuntos
Glucose/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Transporte Biológico , Humanos
12.
Cancers (Basel) ; 12(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339101

RESUMO

Metabolic reprogramming is a hallmark of cancer, with consistent rewiring of glucose, glutamine, and mitochondrial metabolism. While these metabolic alterations are adequate to meet the metabolic needs of cell growth and proliferation, the changes in critical metabolites have also consequences for the regulation of the cell differentiation state. Cancer evolution is characterized by progression towards a poorly differentiated, stem-like phenotype, and epigenetic modulation of the chromatin structure is an important prerequisite for the maintenance of an undifferentiated state by repression of lineage-specific genes. Epigenetic modifiers depend on intermediates of cellular metabolism both as substrates and as co-factors. Therefore, the metabolic reprogramming that occurs in cancer likely plays an important role in the process of the de-differentiation characteristic of the neoplastic process. Here, we review the epigenetic consequences of metabolic reprogramming in cancer, with particular focus on the role of mitochondrial intermediates and hypoxia in the regulation of cellular de-differentiation. We also discuss therapeutic implications.

13.
J Nucl Med ; 61(6): 931-937, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31676728

RESUMO

2-Deoxy-2-18F-fluoro-d-glucose (2-FDG) with PET is undeniably useful in the clinic, being able, among other uses, to monitor change over time using the 2-FDG SUV metric. This report suggests some potentially serious caveats for this and related roles for 2-FDG PET. Most critical is the assumption that there is an exact proportionality between glucose metabolism and 2-FDG metabolism, called the lumped constant, or LC. This report describes that LC is not constant for a specific tissue and may be variable before and after disease treatment. The purpose of this work is not to deny the clinical value of 2-FDG PET; it is a reminder that when one extends the use of an appropriately qualified imaging method, new observations may arise and further validation would be necessary. The current understanding of glucose-based energetics in vivo is based on the quantification of glucose metabolic rates with 2-FDG PET, a method that permits the noninvasive assessment of various human disorders. However, 2-FDG is a good substrate only for facilitated-glucose transporters (GLUTs), not for sodium-dependent glucose cotransporters (SGLTs), which have recently been shown to be distributed in multiple human tissues. Thus, the GLUT-mediated in vivo glucose utilization measured by 2-FDG PET would be masked to the potentially substantial role of functional SGLTs in glucose transport and use. Therefore, under these circumstances, the 2-FDG LC used to quantify in vivo glucose utilization should not be expected to remain constant. 2-FDG LC variations have been especially significant in tumors, particularly at different stages of cancer development, affecting the accuracy of quantitative glucose measures and potentially limiting the prognostic value of 2-FDG, as well as its accuracy in monitoring treatments. SGLT-mediated glucose transport can be estimated using α-methyl-4-deoxy-4-18F-fluoro-d-glucopyranoside (Me-4FDG). Using both 2-FDG and Me-4FDG should provide a more complete picture of glucose utilization via both GLUT and SGLT transporters in health and disease states. Given the widespread use of 2-FDG PET to infer glucose metabolism, it is relevant to appreciate the potential limitations of 2-FDG as a surrogate for glucose metabolic rate and the potential reasons for variability in LC. Even when the readout for the 2-FDG PET study is only an SUV parameter, variability in LC is important, particularly if it changes over the course of disease progression (e.g., an evolving tumor).


Assuntos
Fluordesoxiglucose F18 , Glucose/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Barreira Hematoencefálica , Encéfalo/metabolismo , Transportador de Glucose Tipo 1/fisiologia , Glicólise , Humanos , Neoplasias/metabolismo , Proteínas de Transporte de Sódio-Glucose/fisiologia
14.
Cell Rep ; 28(7): 1860-1878.e9, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412252

RESUMO

Squamous cell carcinoma (SCC), a malignancy arising across multiple anatomical sites, is responsible for significant cancer mortality due to insufficient therapeutic options. Here, we identify exceptional glucose reliance among SCCs dictated by hyperactive GLUT1-mediated glucose influx. Mechanistically, squamous lineage transcription factors p63 and SOX2 transactivate the intronic enhancer cluster of SLC2A1. Elevated glucose influx fuels generation of NADPH and GSH, thereby heightening the anti-oxidative capacity in SCC tumors. Systemic glucose restriction by ketogenic diet and inhibiting renal glucose reabsorption with SGLT2 inhibitor precipitate intratumoral oxidative stress and tumor growth inhibition. Furthermore, reduction of blood glucose lowers blood insulin levels, which suppresses PI3K/AKT signaling in SCC cells. Clinically, we demonstrate a robust correlation between blood glucose concentration and worse survival among SCC patients. Collectively, this study identifies the exceptional glucose reliance of SCC and suggests its candidacy as a highly vulnerable cancer type to be targeted by systemic glucose restriction.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/fisiologia , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Apoptose , Carcinoma de Células Escamosas/genética , Proliferação de Células , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Transcrição SOXB1/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Sci Transl Med ; 10(467)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429355

RESUMO

The diagnostic definition of indeterminate lung nodules as malignant or benign poses a major challenge for clinicians. We discovered a potential marker, the sodium-dependent glucose transporter 2 (SGLT2), whose activity identified metabolically active lung premalignancy and early-stage lung adenocarcinoma (LADC). We found that SGLT2 is expressed early in lung tumorigenesis and is found specifically in premalignant lesions and well-differentiated adenocarcinomas. SGLT2 activity could be detected in vivo by positron emission tomography (PET) with the tracer methyl 4-deoxy-4-[18F] fluoro-alpha-d-glucopyranoside (Me4FDG), which specifically detects SGLT activity. Using a combination of immunohistochemistry and Me4FDG PET, we identified high expression and functional activity of SGLT2 in lung premalignancy and early-stage/low-grade LADC. Furthermore, selective targeting of SGLT2 with FDA-approved small-molecule inhibitors, the gliflozins, greatly reduced tumor growth and prolonged survival in autochthonous mouse models and patient-derived xenografts of LADC. Targeting SGLT2 in lung tumors may intercept lung cancer progression at early stages of development by pairing Me4FDG PET imaging with therapy using SGLT2 inhibitors.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Terapia de Alvo Molecular , Transportador 2 de Glucose-Sódio/metabolismo , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Humanos , Masculino , Camundongos SCID , Camundongos Transgênicos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Tomografia por Emissão de Pósitrons , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mol Cell Biol ; 24(16): 7260-74, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15282324

RESUMO

Transcriptional activation of the cyclin D1 gene (CCND1) plays a pivotal role in G(1)-phase progression, which is thereby controlled by multiple regulatory factors, including nuclear receptors (NRs). Appropriate CCND1 gene activity is essential for normal development and physiology of the mammary gland, where it is regulated by ovarian steroids through a mechanism(s) that is not fully elucidated. We report here that CCND1 promoter activation by estrogens in human breast cancer cells is mediated by recruitment of a c-Jun/c-Fos/estrogen receptor alpha complex to the tetradecanoyl phorbol acetate-responsive element of the gene, together with Oct-1 to a site immediately adjacent. This process coincides with the release from the same DNA region of a transcriptional repressor complex including Yin-Yang 1 (YY1) and histone deacetylase 1 and is sufficient to induce the assembly of the basal transcription machinery on the promoter and to lead to initial cyclin D1 accumulation in the cell. Later on in estrogen stimulation, the cyclin D1/Cdk4 holoenzyme associates with the CCND1 promoter, where E2F and pRb can also be found, contributing to the long-lasting gene enhancement required to drive G(1)-phase completion. Interestingly, progesterone triggers similar regulatory events through its own NRs, suggesting that the gene regulation cascade described here represents a crossroad for the transcriptional control of G(1)-phase progression by different classes of NRs.


Assuntos
Ciclina D1/metabolismo , Estrogênios/metabolismo , Fase G1/fisiologia , Regulação da Expressão Gênica , Progesterona/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Estrogênio/metabolismo , Sequência de Bases , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ciclina D1/genética , Receptor alfa de Estrogênio , Feminino , Genes Reporter , Humanos , Substâncias Macromoleculares , Modelos Genéticos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Repressoras/metabolismo , Elementos de Resposta , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional
17.
Maturitas ; 57(1): 50-5, 2007 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-17395409

RESUMO

Estrogen exerts a primary regulatory role on a wide variety of physiological processes in different tissues and organs. Agonistic ad antagonistic compounds are widely used in human health and, therefore, a deep understanding of their mechanisms of action at the molecular level is mandatory. The effect of 17beta-estradiol and three antiestrogenic drugs, comprising two selective estrogen receptor modulator (SERM, 4-OH-tamoxifen, Raloxifene) and the pure antiestrogen ICI 182,780, on genome-wide gene expression levels was evaluated in breast carcinoma cell lines by DNA microarray analysis. Different clusters of genes, showing specific coregulation patterns, were found. First, several groups of genes displaying temporal-specific up- or down-regulation were characterized. Second, clusters of genes responding to different antiestrogenic drugs in either antagonstic or agonistic fashion, were found. Genes responding specifically to antiestrogens, but not to estrogen, were also identified. In addition, each individual compound exhibited a very specific gene regulation. Bioinformatic analysis was applied to the regulatory sequences of different groups of genes and confirmed that specific pathways and secondary responses are activated at each temporal point and in response to different compounds. Our results underline the complexity of genomic responses to estrogen in breast cancer cells and strongly suggest that the molecular characterization of estrogen agonists and antagonists used in human therapy should be carefully studied.


Assuntos
Neoplasias da Mama/genética , Carcinoma/genética , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/análogos & derivados , Neoplasias da Mama/patologia , Carcinoma/patologia , Regulação para Baixo , Feminino , Fulvestranto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Tamoxifeno/farmacologia , Células Tumorais Cultivadas , Regulação para Cima
18.
Biochem J ; 396(1): 163-72, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16492136

RESUMO

p38 MAPKs (mitogen-activated protein kinases) play important roles in the regulation of cellular responses to environmental stress. Recently, this signalling pathway has also been implicated in the regulation of processes unrelated to stress, for example, in T lymphocytes and cardiomyocytes. In order to identify molecular targets responsible for the housekeeping functions of p38 MAPKs, we have analysed the differences in the transcriptomes of normally proliferating wild-type and p38alpha knockout immortalized embryonic cardiomyocytes. Interestingly, many potential components of the myocardium extracellular matrix were found to be upregulated in the absence of p38alpha. Further analysis of the microarray data identified TEF-1 (transcriptional enhancer factor-1), a known regulator of heart-specific gene expression, and C/EBPbeta (CCAAT/enhancer-binding protein beta), as the two transcription factors the binding sites of which were most enriched in the promoters of p38alpha-regulated genes. We have focused on the study of the extracellular matrix component COL1A1 (alpha1 chain of type I collagen) and found evidence for the involvement of both TEF-1 and C/EBPbeta in the p38alpha-dependent inhibition of COL1A1 transcription. Our data therefore show that p38 MAPKs regulate TEF-1 and C/EBPbeta transcriptional activity in the absence of environmental stress and suggests a role for p38alpha in the expression of extracellular matrix components that maintain organ architecture.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Proteínas de Ligação a DNA/fisiologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Divisão Celular , Colágeno/biossíntese , Colágeno/genética , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/genética , Coração Fetal/citologia , Fibrose , Imunoprecipitação , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia , Regiões Promotoras Genéticas , Fatores de Transcrição de Domínio TEA , Proteínas Quinases p38 Ativadas por Mitógeno/deficiência , Proteínas Quinases p38 Ativadas por Mitógeno/genética
19.
J Mol Endocrinol ; 32(3): 719-75, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15171711

RESUMO

Estrogen controls key cellular functions of responsive cells including the ability to survive, replicate, communicate and adapt to the extracellular milieu. Changes in the expression of 8400 genes were monitored here by cDNA microarray analysis during the first 32 h of human breast cancer (BC) ZR-75.1 cell stimulation with a mitogenic dose of 17beta-estradiol, a timing which corresponds to completion of a full mitotic cycle in hormone-stimulated cells. Hierarchical clustering of 344 genes whose expression either increases or decreases significantly in response to estrogen reveals that the gene expression program activated by the hormone in these cells shows 8 main patterns of gene activation/inhibition. This newly identified estrogen-responsive transcriptome represents more than a simple cell cycle response, as only a few affected genes belong to the transcriptional program of the cell division cycle of eukaryotes, or showed a similar expression profile in other mitogen-stimulated human cells. Indeed, based on the functions assigned to the products of the genes they control, estrogen appears to affect several key features of BC cells, including their metabolic status, proliferation, survival, differentiation and resistance to stress and chemotherapy, as well as RNA and protein synthesis, maturation and turn-over rates. Interestingly, the estrogen-responsive transcriptome does not appear randomly interspersed in the genome. In chromosome 17, for example, a site particularly rich in genes activated by the hormone, physical association of co-regulated genes in clusters is evident in several instances, suggesting the likely existence of estrogen-responsive domains in the human genome.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Cromossomos Humanos , Feminino , Substâncias de Crescimento/metabolismo , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Ativação Transcricional
20.
PLoS One ; 8(5): e59986, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690919

RESUMO

Checkpoint kinase 2 (Chk2) is a major regulator of DNA damage response and can induce alternative cellular responses: cell cycle arrest and DNA repair or programmed cell death. Here, we report the identification of a new role of Chk2 in transcriptional regulation that also contributes to modulating the balance between survival and apoptosis following DNA damage. We found that Chk2 interacts with members of the NCoR/SMRT transcriptional co-regulator complexes and serves as a functional component of the repressor complex, being required for recruitment of SMRT on the promoter of pro-apoptotic genes upon DNA damage. Thus, the co-repressor SMRT exerts a critical protective action against genotoxic stress-induced caspase activation, repressing a functionally important cohort of pro-apoptotic genes. Amongst them, SMRT is responsible for basal repression of Wip1, a phosphatase that de-phosphorylates and inactivates Chk2, thus affecting a feedback loop responsible for licensing the correct timing of Chk2 activation and the proper execution of the DNA repair process.


Assuntos
Apoptose/fisiologia , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/fisiologia , Regulação da Expressão Gênica/fisiologia , Correpressor 2 de Receptor Nuclear/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Ativação Enzimática/fisiologia , Imunofluorescência , Humanos , Análise em Microsséries , Proteína Fosfatase 2C , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA