RESUMO
Miconazole is an antimycotic drug showing anti-cancer effects in several cancers. However, little is known on its effects in melanoma. A375 and SK-MEL-28 human melanoma cell lines were exposed to miconazole and clotrimazole (up to 100 mM). Proliferation, viability with MTT assay and vascular mimicry were assayed at 24 h treatment. Molecular effects were measured at 6 h, namely, ATP-, ROS-release and mitochondria-related cytofluorescence. A metabolomic profile was also investigated at 6 h treatment. Carnitine was one of the most affected metabolites; therefore, the expression of 29 genes involved in carnitine metabolism was investigated in the public platform GEPIA2 on 461 melanoma patients and 558 controls. After 24 h treatments, miconazole and clotrimazole strongly and significantly inhibited proliferation in the presence of 10% serum on either melanoma cell lines; they also strongly reduced viability and vascular mimicry. After 6 h treatment, ATP reduction and ROS increase were observed, as well as a significant reduction in mitochondria-related fluorescence. Further, in A375, miconazole strongly and significantly altered expression of several metabolites including carnitines, phosphatidyl-cholines, all amino acids and several other small molecules, mostly metabolized in mitochondria. The expression of 12 genes involved in carnitine metabolism was found significantly modified in melanoma patients, 6 showing a significant impact on patients' survival. Finally, miconazole antiproliferation activity on A375 was found completely abrogated in the presence of carnitine, supporting a specific role of carnitine in melanoma protection toward miconazole effect, and was significantly reversed in the presence of caspases inhibitors such as ZVAD-FMK and Ac-DEVD-CHO, and a clear pro-apoptotic effect was observed in miconazole-treated cells, by FACS analysis of Annexin V-FITC stained cells. Miconazole strongly affects proliferation and other biological features in two human melanoma cell lines, as well as mitochondria-related functions such as ATP- and ROS-release, and the expression of several metabolites is largely dependent on mitochondria function. Miconazole, likely acting via carnitine and mitochondria-dependent apoptosis, is therefore suggested as a candidate for further investigations in melanoma treatments.
Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Miconazol/farmacologia , Clotrimazol , Espécies Reativas de Oxigênio , Mitocôndrias , Carnitina/farmacologia , Trifosfato de AdenosinaRESUMO
BACKGROUND: Immunotherapy has dramatically improved cancer treatment by inhibiting or activating specific cell receptors, thus unleashing the host anti-tumor response. However, the engagement of the three main immune checkpoints so far identified, CTLA4, PD-1 and PD-L1, is effective in a fraction of patients, therefore novel targets must be identified and tested. METHODS: We focused our attention on the following nine highly relevant immune checkpoint (ICR) receptors: CTLA4, PD1, PD-L1, LAG3, TIM3, OX40, GITR, 4-1BB and TIGIT. All of them are targets of existing drugs currently under clinical scrutiny in several malignancies. Their expression levels were evaluated in patient tissues of 31 different cancer types vs. proper controls, in a total of 15,038 individuals. This analysis was carried out by interrogating public databases available on GEPIA2 portal and UALCAN portal. By the Principal Component Analysis (PCA) their ability to effectively discriminate patients form controls was then investigated. Expression of the nine ICRs was also related to overall survival in 31 cancer types and expressed as Hazard Ratio, on the GEPIA2 portal and validated, for melanoma patients, in patients-datasets available on PROGgene V2 portal. RESULTS: Significant differential expression was observed for each ICR molecule in many cancer types. A 7-molecules profile was found to specifically discriminate melanoma patients from controls, while two different 6-molecules profiles discriminate pancreatic cancer patients and Testicular Germ Cell Tumors from matched controls. Highly significant survival improvement was found to be related to the expression levels of all nine ICRs in a wide spectrum of malignancies. For melanoma analysis, the relation with survival observed in TCGA datasets was validated in independent GSE melanoma datasets. CONCLUSION: Analysis the nine ICR molecules demonstrates that their expression patterns may be considered as markers of disease and strong survival predictors in a variety of malignancies frequently associated to poor prognosis. Thus, the present findings are strongly advocating that exploratory clinical trials are worth to be performed, using available drugs, targeting these molecules.
Assuntos
Melanoma , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Antígeno CTLA-4 , Expressão Gênica , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Fatores Imunológicos , Imunoterapia , Melanoma/genética , Melanoma/terapia , Prognóstico , Receptores ImunológicosRESUMO
(1) Background. Immune response dysregulation plays a key role in melanoma, as suggested by the substantial prognosis improvement observed under immune-modulation therapy. Similarly, the role of autoimmunity is under large investigation in melanoma and other cancers. (2) Methods. Expression of 98 autoimmunity-related genes was investigated in 1948 individuals (1024 melanoma and 924 healthy controls). Data were derived from four independent databases, namely, GEO in the selection phase, and Ist Online, GEPIA2 and GENT2, in three sequential validation-steps. ROC analyses were performed to measure the ability to discriminate melanoma from controls. Principal Component Analysis (PCA) was used to combine expression data; survival analysis was carried out on the GEPIA2 platform. (3) Results. Expression levels of NOD2, BAX, IL-18 and ADRB2 were found to be significantly different in melanoma vs. controls and discriminate melanoma from controls in an extremely effective way, either as single molecules (AUC > 0.93 in all cases) or as a profile, according to the PCA analysis. Patients showing high-expression of NOD2 and of IL-18 also show a significant survival improvement as compared to low-expression patients. (4) Conclusions. Four genes strongly related to autoimmunity show a significant altered expression in melanoma samples, highlighting the role they may play in melanoma.
RESUMO
BACKGROUND: Publicly available genomic and transcriptomic data in searchable databases allow researchers to investigate specific medical issues in thousands of patients. Many studies have highlighted the role lipids play in cancer initiation and progression and reported nutritional interventions aimed at improving prognosis and survival. Therefore, there is an increasing interest in the role that fat intake may play in cancer. It is known that there is a relationship between BMI and survival in patients with cancer, and that there is an association between a high-fat diet and increased cancer risk. In some cancers, such as colorectal cancer, obesity and high fat intake are known to increase the risk of cancer initiation and progression. On the contrary, in patients undergoing treatment for melanoma, a higher BMI unexpectedly acts as a protective factor rather than a risk factor; this phenomenon is known as the obesity paradox. OBJECTIVE: We aimed to identify the molecular mechanism underlying the obesity paradox, with the expectation that this could indicate new effective strategies to reduce risk factors and improve protective approaches. METHODS: In order to determine the genes potentially involved in this process, we investigated the expression values of lipid-related genes in patients with melanoma or colorectal cancer. We used available data from 2990 patients from 3 public databases (IST [In Silico Transcriptomics] Online, GEO [Gene Expression Omnibus], and Oncomine) in an analysis that involved 3 consecutive validation steps. Of this group, data from 1410 individuals were analyzed in the IST Online database (208 patients with melanoma and 147 healthy controls, as well as 991 patients with colorectal cancer and 64 healthy controls). In addition, 45 melanoma, 18 nevi, and 7 healthy skin biopsies were analyzed in another database, GEO, to validate the IST Online data. Finally, using the Oncomine database, 318 patients with melanoma (312 controls) and 435 patients with colorectal cancer (445 controls) were analyzed. RESULTS: In the first and second database investigated (IST Online and GEO, respectively), patients with melanoma consistently showed significantly (P<.001) lower expression levels of 4 genes compared to healthy controls: CD36, MARCO, FABP4, and FABP7. This strong reduction was not observed in patients with colorectal cancer. An additional analysis was carried out on a DNA-TCGA data set from the Oncomine database, further validating CD36 and FABP4. CONCLUSIONS: The observed lower expression of genes such as CD36 and FABP4 in melanoma may reduce the cellular internalization of fat and therefore make patients with melanoma less sensitive to a high dietary fat intake, explaining in part the obesity paradox observed in patients with melanoma.
RESUMO
BACKGROUND/AIM: Hypoxia-inducible factor 1 (HIF1) inhibitors have been proposed as therapeutic agents for several tumor types. HIF1α is induced by hypoxia and by pathogens in normoxia through toll-like receptors (TLRs). The TLR3 activator polyinosinic:polycytidylic acid [poly(I:C)] induces apoptosis in various types of cancer but not in the most aggressive breast cancer cell lines. We hypothesized that the failure of TLR3 stimulation to induce apoptosis in these cells might be due to an elevated HIF1α level and this link might be exploited. MATERIALS AND METHODS: Poly(I:C)-induced signaling pathway and expression of HIF1α and HIF1α targets were studied in MDA MB-231 and MCF-7 breast cancer cell lines by western blot. Flow cytometry was used for apoptotic responses and vasculogenic mimicry as bioassay. RESULTS: Poly(I:C) increased expression of HIF1α and its targets BCL2 apoptosis regulator and c-MYC. Moreover, using pharmacological or genetic HIF1 inhibition, reduction of poly(I:C)-induced expression of HIF1α was paralleled by lowering of c-MYC and increased sensitivity to poly(I:C)-induced apoptosis, demonstrating the crucial role of this factor. We provide the first evidence in breast cancer cells that TLR3 stimulation induces HIF1α-dependent vasculogenic mimicry. By using specific inhibitors, we identified a signaling cascade upstream of HIF1α induction. CONCLUSION: Combined treatment with poly(I:C) and HIF1 inhibitors deserves consideration as an effective strategy in breast cancer therapy.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Poli I-C/farmacologia , Receptor 3 Toll-Like/genética , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/agonistasRESUMO
BACKGROUND: Even though new therapies are available against melanoma, novel approaches are needed to overcome resistance and high-toxicity issues. In the present study the anti-melanoma activity of Nicotinamide (NAM), the amide form of Niacin, was assessed in vitro and in vivo. METHODS: Human (A375, SK-MEL-28) and mouse (B16-F10) melanoma cell lines were used for in vitro investigations. Viability, cell-death, cell-cycle distribution, apoptosis, Nicotinamide Adenine Dinucleotide+ (NAD+), Adenosine Triphosphate (ATP), and Reactive Oxygen Species (ROS) levels were measured after NAM treatment. NAM anti-SIRT2 activity was tested in vitro; SIRT2 expression level was investigated by in silico transcriptomic analyses. Melanoma growth in vivo was measured in thirty-five C57BL/6 mice injected subcutaneously with B16-F10 melanoma cells and treated intraperitoneally with NAM. Interferon (IFN)-γ-secreting murine cells were counted with ELISPOT assay. Cytokine/chemokine plasmatic levels were measured by xMAP technology. Niacin receptors expression in human melanoma samples was also investigated by in silico transcriptomic analyses. RESULTS: NAM reduced up to 90% melanoma cell number and induced: i) accumulation in G1-phase (40% increase), ii) reduction in S- and G2-phase (about 50% decrease), iii) a 10-fold increase of cell-death and 2.5-fold increase of apoptosis in sub-G1 phase, iv) a significant increase of NAD+, ATP, and ROS levels, v) a strong inhibition of SIRT2 activity in vitro. NAM significantly delayed tumor growth in vivo (p ≤ 0.0005) and improved survival of melanoma-bearing mice (p ≤ 0.0001). About 3-fold increase (p ≤ 0.05) of Interferon-gamma (IFN-γ) producing cells was observed in NAM treated mice. The plasmatic expression levels of 6 cytokines (namely: Interleukin 5 (IL-5), Eotaxin, Interleukin 12 (p40) (IL12(p40)), Interleukin 3 (IL-3), Interleukin 10 (IL-10) and Regulated on Activation Normal T Expressed and Secreted (RANTES) were significantly changed in the blood of NAM treated mice, suggesting a key role of the immune response. The observed inhibitory effect of NAM on SIRT2 enzymatic activity confirmed previous evidence; we show here that SIRT2 expression is significantly increased in melanoma and inversely related to melanoma-patients survival. Finally, we show for the first time that the expression levels of Niacin receptors HCAR2 and HCAR3 is almost abolished in human melanoma samples. CONCLUSION: NAM shows a relevant anti-melanoma activity in vitro and in vivo and is a suitable candidate for further clinical investigations.
Assuntos
Melanoma Experimental/tratamento farmacológico , Niacinamida/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Complexo Vitamínico B/farmacologia , Idoso , Animais , Apoptose , Ciclo Celular , Proliferação de Células , Feminino , Humanos , Técnicas In Vitro , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/secundário , Células Tumorais CultivadasRESUMO
The identification of reliable and quantitative melanoma biomarkers may help an early diagnosis and may directly affect melanoma mortality and morbidity. The aim of the present study was to identify effective biomarkers by investigating the expression of 27 cytokines/chemokines in melanoma compared to healthy controls, both in serum and in tissue samples. Serum samples were from 232 patients recruited at the IDI-IRCCS hospital. Expression was quantified by xMAP technology, on 27 cytokines/chemokines, compared to the control sera. RNA expression data of the same 27 molecules were obtained from 511 melanoma- and healthy-tissue samples, from the GENT2 database. Statistical analysis involved a 3-step approach: analysis of the single-molecules by Mann-Whitney analysis; analysis of paired-molecules by Pearson correlation; and profile analysis by the machine learning algorithm Support Vector Machine (SVM). Single-molecule analysis of serum expression identified IL-1b, IL-6, IP-10, PDGF-BB, and RANTES differently expressed in melanoma (p < 0.05). Expression of IL-8, GM-CSF, MCP-1, and TNF-α was found to be significantly correlated with Breslow thickness. Eotaxin and MCP-1 were found differentially expressed in male vs. female patients. Tissue expression analysis identified very effective marker/predictor genes, namely, IL-1Ra, IL-7, MIP-1a, and MIP-1b, with individual AUC values of 0.88, 0.86, 0.93, 0.87, respectively. SVM analysis of the tissue expression data identified the combination of these four molecules as the most effective signature to discriminate melanoma patients (AUC = 0.98). Validation, using the GEPIA2 database on an additional 1019 independent samples, fully confirmed these observations. The present study demonstrates, for the first time, that the IL-1Ra, IL-7, MIP-1a, and MIP-1b gene signature discriminates melanoma from control tissues with extremely high efficacy. We therefore propose this 4-molecule combination as an effective melanoma marker.
RESUMO
Expression of 328 ion channel genes was investigated, by in silico analysis, in 170 human melanoma samples and controls. Ninety-one members of this gene-family (i.e., about 28%) show a significant (p < 0.05) differential expression in melanoma- vs. nevi-biopsies, taken from the GEO database. ROC (receiver operating characteristic) analysis selected 20 genes as potential markers showing the highest discrimination ability of melanoma vs. nevi (AUC > 0.90 and p < 0.0001). These 20 genes underwent a first in silico-validation round in an independent patients-dataset from GEO. A second-in silico-validation step was then carried out on a third human dataset in Oncomine. Finally, five genes were validated, showing extremely high sensitivity and specificity in melanoma detection (>90% in most cases). Such five genes (namely, SCNN1A, GJB3, KCNK7, GJB1, KCNN2) are novel potential melanoma markers or molecular targets, never previously related to melanoma. The "druggable genome" analysis was then carried out. Miconazole, an antifungal drug commonly used in clinics, is known to target KCNN2, the best candidate among the five identified genes. Miconazole was then tested in vitro in proliferation assays; it dose-dependently inhibited proliferation up to 90% and potently induced cell-death in A-375 and SKMEL-28 melanoma cells, while it showed no effect in control cells. Moreover, specific silencing of KCNN2 ion channel was achieved by siRNA transfection; under such condition miconazole strongly increases its anti-proliferative effect. In conclusion, the present study identified five ion channels that can potentially serve as sensitive and specific markers in human melanoma specimens and demonstrates that the antifungal drug miconazole, known to target one of the five identified ion channels, exerts strong and specific anti-melanoma effects in vitro.
RESUMO
ROS and oxidative stress may promote autophagy; on the other hand, autophagy may help reduce oxidative damages. According to the known interplay of ROS, autophagy, and melanoma onset, we hypothesized that autophagy-related genes (ARGs) may represent useful melanoma biomarkers. We therefore analyzed the gene and protein expression of 222 ARGs in human melanoma samples, from 5 independent expression databases (overall 572 patients). Gene expression was first evaluated in the GEO database. Forty-two genes showed extremely high ability to discriminate melanoma from nevi (63 samples) according to ROC (AUC ≥ 0.85) and Mann-Whitney (p < 0.0001) analyses. The 9 genes never related to melanoma before were then in silico validated in the IST online database. BAG1, CHMP2B, PEX3, and WIPI1 confirmed a strong differential gene expression, in 355 samples. A second-round validation performed on the Human Protein Atlas database showed strong differential protein expression for BAG1, PEX3, and WIPI1 in melanoma vs control samples, according to the image analysis of 80 human histological sections. WIPI1 gene expression also showed a significant prognostic value (p < 0.0001) according to 102 melanoma patients' survival data. We finally addressed in Oncomine database whether WIPI1 overexpression is melanoma-specific. Within more than 20 cancer types, the most relevant WIPI1 expression change (p = 0.00002; fold change = 3.1) was observed in melanoma. Molecular/functional relationships of the investigated molecules with melanoma and their molecular/functional network were analyzed via Chilibot software, STRING analysis, and gene ontology enrichment analysis. We conclude that WIPI1 (AUC = 0.99), BAG1 (AUC = 1), and PEX3 (AUC = 0.93) are relevant novel melanoma markers at both gene and protein levels.